当前位置: X-MOL 学术Chemosphere › 论文详情
Cobalt-modified 2D porous organic polymer for highly efficient electrocatalytic removal of toxic urea and nitrophenol
Chemosphere ( IF 5.778 ) Pub Date : 2020-11-20 , DOI: 10.1016/j.chemosphere.2020.129052
S. Gopi; A.G. Ramu; S. Sakthivel; Gilberto Maia; C.H. Jang; Dongjin Choi; Kyusik Yun

The urea oxidation reaction (UOR) and nitrophenol reduction are safe and key limiting reactions for sustainable energy conversion and storage. Urea and nitrophenol are abundant in industrial and agricultural wastes, human wastewater, and in the environment. Catalytic oxidative and reductive removal is the most effective process to remove urea and 4-nitrophenol from the environment, necessary to protect human health. 2D carbon-supported, cobalt nanoparticle-based materials are emerging catalysts for nitrophenol reduction and as an anode material for the UOR. In this work, cobalt modified on a porous organic polymer (CoPOP) was synthesized and carbonized at 400 and 600 °C. The formation of CoPOP was confirmed by FT-IR spectroscopy, the 2D graphitic layer and amorphous carbon with cobalt metal by TEM, SEM, and PXRD, and the elemental composition by TEM mapping, EDX, and XPS. The catalytic activity for the 4-nitrophenol reduction was studied and the related electrocatalytic UOR was scientifically evaluated. The catalytic activity toward the reduction of 4-NP to 4-AP was tested with the addition of NaBH4; CoPOP-3 exhibited enhanced activity at a rate of 0.069 min-1. Furthermore, LSV investigated the catalytic activity of materials toward UOR, producing hydrogen gas, the products of which were analyzed via gas chromatography. Among the electrocatalysts studied, CoPOP-2 exhibited a lower onset potential, and the Tafel slope was 1.34 V and 80 mV dec-1. This study demonstrates that cobalt metal-doped porous organic polymers can be used as efficient catalysts to remove urea and nitrophenol from wastewater.

更新日期:2020-11-21
全部期刊列表>>
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
苏州大学
林亮
南方科技大学
朱守非
胡少伟
杨小会
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
上海纽约大学
浙江大学
廖矿标
天合科研
x-mol收录
试剂库存
down
wechat
bug