当前位置: X-MOL 学术J. Earth Syst. Sci. › 论文详情
Spatial and temporal trends in high resolution gridded rainfall data over India
Journal of Earth System Science ( IF 1.423 ) Pub Date : 2020-11-20 , DOI: 10.1007/s12040-020-01494-x
Grace Nengzouzam, Sanayanbi Hodam, Arnab Bandyopadhyay, Aditi Bhadra

Abstract

A high resolution (0.25°×0.25°) daily gridded dataset was analysed to study the spatial and temporal trend in various regions of India during the period of 1901–2013. The non-parametric Mann–Kendall (MK) test has been applied to the time series (1901–2013) rainfall data in order to detect the trends for both rainfall depth and number of rainy days. Sen slope estimator test was also used to find out the magnitude of the trend. In addition, Pettitt–Mann–Whitney (PMW) test was employed so as to determine the probable change year. The results of trend analysis of rainfall depth showed maximum number of grid points having increasing trend in summer months, while the dry months showed higher grid points with significant decreasing trend. Jammu and Kashmir, in particular, was found to have increasing trend in all months for all three levels of significances, i.e., 1%, 5%, and 10%, while NE (northeastern) region continuously reported significant decreasing trends. The annual trend analysis of the 30-year moving window of rainfall depth showed higher number of grid points with significant increasing trend during 1901–1950, decreasing trend during 1931–1980, and increasing trend again during 1961–2013. The PMW test for the rainfall depth and number of rainy days for 1901–2010 showed 1961 and 1974 as the most probable change point years with about 339 and 284 grid points agreeing upon it, respectively. The maximum increasing significant trends in rainfall was observed during south-west monsoon months. Recent years also reported an increase in rainfall intensity leading to probable increase of extreme events like floods and droughts.

Research Highlights

  • MK test and Sen slope estimation were carried out to analyse the trend and magnitude of trends for rainfall depth over India for the period of 113 years (1901–2013) wherein the wet months were found to show positive trends while the dry months were characterized more by negative trends.

  • Pettitt–Mann–Whitney test was also carried out for both the rainfall depth and number of rainy days to detect the change year wherein the years 1961 and 1974 were found as the most probable change point years, respectively.

  • A 30-year moving window was used for both rainy days and rainfall depth to represent the climatic conditions of the region. Thus, the total 113 years daily rainfall data from 1901 to 2013 were divided into 10 sections, viz., 1901–1930, 1911–1940, 1921–1950, 1931–1960, 1941–1970, 1951–1980, 1961–1990, 1971–2000, 1981–2010, and 1991–2013.

  • Upon analysing the trend of rainfall depth, on seasonal scale, maximum significant increasing trends were reported during the periods 1961–1990 and 1971–2000 in all seasons except the post-monsoon months. This indicated that maximum change in trend took place during these periods justifying the outcome of PMW test carried out.

  • There might be an increase in the intensity of rainfall on the rainy days as opposed to prolonged dry periods leading to increase in extreme events like floods and droughts in the recent years. It is also clearly visible that the country is experiencing a huge shortage of rainwater during the recent years accentuating the need for conservation of water to satisfy the country’s increasing demand.

更新日期:2020-11-21
全部期刊列表>>
施普林格,自然编辑
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
林亮
南方科技大学
朱守非
华东师范大学
胡少伟
有机所林亮
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
上海纽约大学
浙江大学
廖矿标
天合科研
x-mol收录
试剂库存
down
wechat
bug