当前位置: X-MOL 学术Phys. Rev. Research › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Coarse-grained entropy production with multiple reservoirs: Unraveling the role of time scales and detailed balance in biology-inspired systems
Physical Review Research Pub Date : 2020-11-19 , DOI: 10.1103/physrevresearch.2.043257
Daniel M. Busiello , Deepak Gupta , Amos Maritan

A general framework to describe a vast majority of biology-inspired systems is to model them as stochastic processes in which multiple couplings are in play at the same time. Molecular motors, chemical reaction networks, catalytic enzymes, and particles exchanging heat with different baths, constitute some interesting examples of such a modelization. Moreover, they usually operate out of equilibrium, being characterized by a net production of entropy, which entails a constrained efficiency. Hitherto, in order to investigate multiple processes simultaneously driving a system, all theoretical approaches deal with them independently, at a coarse-grained level, or employing a separation of time scales. Here, we explicitly take in consideration the interplay among time scales of different processes and whether or not their own evolution eventually relaxes toward an equilibrium state in a given subspace. We propose a general framework for multiple coupling, from which the well-known formulas for the entropy production can be derived, depending on the available information about each single process. Furthermore, when one of the processes does not equilibrate in its subspace, even if much faster than all the others, it introduces a finite correction to the entropy production. We employ our framework in various simple and pedagogical examples, for which such a corrective term can be related to a typical scaling of physical quantities in play.

中文翻译:

具有多个储集层的粗粒度熵产生:阐明时间尺度和详细平衡在生物学启发系统中的作用

描述绝大多数受生物学启发的系统的通用框架是将它们建模为随机过程,其中多个耦合同时起作用。分子马达,化学反应网络,催化酶和与不同浴池进行热交换的颗粒构成了此类建模的一些有趣示例。而且,它们通常不平衡地工作,其特征在于净产生熵,这带来了受限的效率。迄今为止,为了研究同时驱动系统的多个过程,所有理论方法都以粗粒度级别或采用时间尺度的分离方式对其进行独立处理。这里,我们明确考虑了不同过程的时间尺度之间的相互作用,以及它们自身的演化最终是否在给定子空间中趋向平衡状态。我们提出了一个用于多重耦合的通用框架,可以根据有关每个单个过程的信息,从中导出熵产生的众所周知的公式。此外,当其中一个过程在其子空间中不平衡时,即使比所有其他过程都快得多,它也会对熵产生进行有限校正。我们在各种简单的教学示例中采用了我们的框架,对于这些示例,这种纠正术语可以与游戏中物理量的典型缩放比例相关。从中可以得出有关熵产生的众所周知的公式,这取决于有关每个单个过程的可用信息。此外,当其中一个过程在其子空间中不平衡时,即使比所有其他过程都快得多,它也会对熵的产生进行有限校正。我们在各种简单的教学示例中采用了我们的框架,对于这些示例,这种纠正术语可以与游戏中物理量的典型缩放比例相关。从中可以得出有关熵产生的众所周知的公式,这取决于有关每个单个过程的可用信息。此外,当其中一个过程在其子空间中不平衡时,即使比所有其他过程都快得多,它也会对熵产生进行有限校正。我们在各种简单的教学示例中采用了我们的框架,对于这些示例,这种纠正术语可能与游戏中物理量的典型缩放比例有关。
更新日期:2020-11-19
down
wechat
bug