当前位置: X-MOL 学术SIAM J. Discret. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On Generalized Perfect Difference Sumsets
SIAM Journal on Discrete Mathematics ( IF 0.8 ) Pub Date : 2020-11-18 , DOI: 10.1137/20m1338873
Jin-Hui Fang

SIAM Journal on Discrete Mathematics, Volume 34, Issue 4, Page 2448-2456, January 2020.
Let $\mathbb{Z}$ be the set of integers and $\mathbb{N}$ be the set of positive integers. For a nonempty set $A$ of integers and any integers $n$, $h\ge 2$, denote $r_{A,h}(n)$ by the number of representations of $n$ of the form $n=a_1+a_2+\cdots+a_h$, where $a_1\le \cdots \le a_h$ and $a_i\in A$ for $i=1,2,\ldots,h$ and $d_{A}(n)$ by the number of $(a,a')$ with $a,a'\in A$ such that $n=a-a'$. The set $A$ of integers is called a perfect difference sumset if $r_{A,2}(n)=1$ for all integers $n$ and $d_A(n)=1$ for all positive integers $n$. In this paper, we consider generalized perfect difference sumsets and prove that, if two functions $f_1:\mathbb{N}\rightarrow \mathbb{N}$ and $f_2:\mathbb{Z}\rightarrow \mathbb{N}$ satisfy that $\liminf_{u\rightarrow \infty}f_1(u)\ge 2$ and $\liminf_{|u|\rightarrow \infty}f_2(u)\ge 2$, then there exists a set $A$ of integers such that (i) $d_A(n)=f_1(n)$ for all $n\in \mathbb{N}$ and $r_{A,2}(n)=f_2(n)$ for all $n\in \mathbb{Z}$; (ii) $\limsup_{x\rightarrow\infty} A(-x,x)/\sqrt{x}\ge 1/\sqrt{2}$. Furthermore, following Cilleruelo and Nathanson's work, we proved that there exists a set $A$ of integers such that (i) $r_{A,3}(n)=2$ for all $n\in \mathbb{Z}$ and $d_A(n)=1$ for all $n\in \mathbb{N}$; (ii) $A(x)\gg x^{\sqrt{5}-2+o(1)}$.


中文翻译:

关于广义完美差分集

SIAM离散数学杂志,第34卷,第4期,第2448-2456页,2020年1月。
假设$ \ mathbb {Z} $为整数集合,而$ \ mathbb {N} $为正整数集合。对于整数的非空集$ A $和任何整数$ n $,$ h \ ge 2 $,用形式为$ n =的$ n $表示数量来表示$ r_ {A,h}(n)$ a_1 + a_2 + \ cdots + a_h $,其中$ a_1 \ le \ cdots \ le a_h $和$ a_i \ in A $ in $ i = 1,2,\ ldots,h $和$ d_ {A}(n)$在A $中用$(a,a')$加上$ a,a'\的个数,使得$ n = a-a'$。如果对于所有整数$ n $ $ r_ {A,2}(n)= 1 $,而对于所有正整数$ n $ $ d_A(n)= 1 $,则整数集$ A $被称为完美差总和。在本文中,我们考虑广义完美差分和集并证明,如果两个函数$ f_1:\ mathbb {N} \ rightarrow \ mathbb {N} $和$ f_2:\ mathbb {Z} \ rightarrow \ mathbb {N} $满足$ \ liminf_ {u \ rightarrow \ infty} f_1(u)\ ge 2 $和$ \ liminf_ {| u | \ rightarrow \ infty} f_2(u)\ ge 2 $,则存在一组整数$ A $,使得(i)\ mathbb {N} $中所有$ n \和$ r_ {A,2}(n)=的$ d_A(n)= f_1(n)$ \ mathbb {Z} $中所有$ n \ f_2(n)$;(ii)$ \ limsup_ {x \ rightarrow \ infty} A(-x,x)/ \ sqrt {x} \ ge 1 / \ sqrt {2} $。此外,根据Cilleruelo和Nathanson的工作,我们证明存在一组整数$ A $,使得(i)\ r \ {A,3}(n)= 2 $对于\ mathbb {Z} $中的所有$ n \ mathbb {N} $中所有$ n \的$ d_A(n)= 1 $;(ii)$ A(x)\ gg x ^ {\ sqrt {5} -2 + o(1)} $。3}(n)= $ 2,\ mathbb {Z} $中的所有$ n和$ d_A(n)= 1 $,\ n \ mathbb {N} $中的所有$ n; (ii)$ A(x)\ gg x ^ {\ sqrt {5} -2 + o(1)} $。3}(n)= $ 2,\ mathbb {Z} $中的所有$ n和$ d_A(n)= 1 $,\ n \ mathbb {N} $中的所有$ n; (ii)$ A(x)\ gg x ^ {\ sqrt {5} -2 + o(1)} $。
更新日期:2020-11-19
down
wechat
bug