当前位置: X-MOL 学术J. Geophys. Res. Planets › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Study of Daytime Convective Vortices and Turbulence in the Martian Planetary Boundary Layer Based on Half‐a‐Year of InSight Atmospheric Measurements and Large‐Eddy Simulations
Journal of Geophysical Research: Planets ( IF 4.8 ) Pub Date : 2020-11-19 , DOI: 10.1029/2020je006511
A. Spiga 1, 2 , N. Murdoch 3 , R. Lorenz 4 , F. Forget 1 , C. Newman 5 , S. Rodriguez 6 , J. Pla‐Garcia 7 , D. Viúdez Moreiras 7 , D. Banfield 8 , C. Perrin 6 , N. T. Mueller 9 , M. Lemmon 10 , E. Millour 1 , W. B. Banerdt 11
Affiliation  

Studying the atmospheric planetary boundary layer (PBL) is crucial to understand the climate of a planet. The meteorological measurements by the instruments onboard InSight at a latitude of 4.5°N make a unique rich data set to study the active turbulent dynamics of the daytime PBL on Mars. Here we use the high‐sensitivity continuous pressure, wind, and temperature measurements in the first 400 sols of InSight operations (from northern late winter to midsummer) to analyze wind gusts, convective cells, and vortices in Mars’ daytime PBL. We compare InSight measurements to turbulence‐resolving large‐eddy simulations (LES). The daytime PBL turbulence at the InSight landing site is very active, with clearly identified signatures of convective cells and a vast population of 6,000 recorded vortex encounters, adequately represented by a power law with a 3.4 exponent. While the daily variability of vortex encounters at InSight can be explained by the statistical nature of turbulence, the seasonal variability is positively correlated with ambient wind speed, which is supported by LES. However, wind gustiness is positively correlated to surface temperature rather than ambient wind speed and sensible heat flux, confirming the radiative control of the daytime Martian PBL; and fewer convective vortices are forming in LES when the background wind is doubled. Thus, the long‐term seasonal variability of vortex encounters at the InSight landing site is mainly controlled by the advection of convective vortices by ambient wind speed. Typical tracks followed by vortices forming in the LES show a similar distribution in direction and length as orbital imagery.

中文翻译:

基于半年InSight大气测量和大涡模拟的火星行星边界层白天对流涡旋和湍流研究

研究大气行星边界层(PBL)对于了解行星的气候至关重要。InSight仪器在4.5°N纬度上的气象测量结果提供了独特的丰富数据集,用于研究火星上白天PBL的活跃湍流动力学。在这里,我们使用InSight操作的前400溶胶(从北部冬季末到仲夏)中的高灵敏度连续压力,风和温度测量值来分析火星白天PBL中的阵风,对流单元和涡流。我们将InSight测量结果与解决湍流的大涡流模拟(LES)进行了比较。InSight着陆点的白天PBL湍流非常活跃,对流细胞的特征清晰可辨,记录了6,000个记录的涡旋,这充分体现了幂定律和3。4指数。尽管InSight中涡流的每日变化可以用湍流的统计性质来解释,但季节性变化与环境风速呈正相关,这得到了LES的支持。然而,阵风与表面温度呈正相关,与环境风速和显热通量呈正相关,这证实了白天火星PBL的辐射控制。当背景风增加一倍时,LES中形成的对流涡旋较少。因此,InSight着陆点遇到的涡旋的长期季节性变化主要由对流涡旋的对流和周围风速控制。在LES中形成涡流的典型轨道在方向和长度上的分布与轨道影像相似。尽管InSight中涡流的每日变化可以用湍流的统计性质来解释,但季节性变化与环境风速呈正相关,这得到了LES的支持。然而,阵风与表面温度呈正相关,与环境风速和显热通量呈正相关,这证实了白天火星PBL的辐射控制。当背景风增加一倍时,LES中形成的对流涡旋较少。因此,InSight着陆点遇到的涡旋的长期季节性变化主要由对流涡旋的对流和环境风速控制。LES中形成涡流的典型轨道在方向和长度上的分布与轨道影像相似。尽管InSight中涡流的每日变化可以用湍流的统计性质来解释,但季节性变化与环境风速呈正相关,这得到了LES的支持。然而,阵风与表面温度呈正相关,与环境风速和显热通量呈正相关,这证实了白天火星PBL的辐射控制。当背景风增加一倍时,LES中形成的对流涡旋较少。因此,InSight着陆点遇到的涡旋的长期季节性变化主要由对流涡旋的对流和环境风速控制。LES中形成涡流的典型轨道在方向和长度上的分布与轨道影像相似。
更新日期:2021-01-27
down
wechat
bug