当前位置: X-MOL 学术Microw. Opt. Technol. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Generation of nondiffraction beams by using graphene‐based metasurface in terahertz regime
Microwave and Optical Technology Letters ( IF 1.5 ) Pub Date : 2020-11-17 , DOI: 10.1002/mop.32726
Ting Zeng 1 , Li Deng 1 , Chen Zhang 1 , Meijun Qu 2 , Hongjun Wang 1 , Ling Wang 1 , Shufang Li 1
Affiliation  

In this article, a graphene‐based reflective metasurface which can generate Bessel beams at arbitrary directions is proposed at 1.52 THz. It chooses the classical cross structure as the unit cell and extends the coverage of the reflection phase to 360° by adjusting two key parameters while maintaining a relatively high‐reflection amplitude. Combined with the excellent impedance characteristics of graphene in the terahertz regime and the long energy transmission distance of the nondiffraction beam, the reflective metasurface finally realize the pseudo‐Bessel beam with a maximum propagation distance of about 3358.85 um and a deflection of about 15° in yoz‐plane as expected. Two forms of efficiency are proposed for the metasurface, one is the focusing efficiency, the other is the conventional radiation efficiency. The simulation results show that the former shows a trend of increasing first and then decreasing, which conforms to the beam‐forming property of Bessel beam; the latter can be basically maintained at high value of 70% within the nondiffraction propagation distance, which conforms to the energy transmission characteristic of the nondiffraction beam. All the studies show that the graphene‐based metasurface combined with the nondiffraction theory has the advantages of highly controllable beam deflection, long focusing distance, and high‐energy transfer efficiency in the terahertz regime, so it will have a broad application prospect in terahertz telecommunication, wireless energy transmission, near‐field detecting, imaging and many other fields.

中文翻译:

在太赫兹状态下使用基于石墨烯的超表面产生非衍射束

在本文中,提出了一种可以在任意方向产生贝塞尔光束的基于石墨烯的反射超表面,频率为1.52 THz。它选择经典的十字形结构作为单位晶胞,并通过调整两个关键参数,同时保持相对较高的反射幅度,将反射相的覆盖范围扩展至360°。结合石墨烯在太赫兹状态下的出色阻抗特性和无衍射光束的长能量传输距离,反射超表面最终实现了伪贝塞尔光束,其最大传播距离约为3358.85 um,偏转角约为15°。 yoz-plane符合预期。对于超颖表面,提出了两种形式的效率,一种是聚焦效率,另一种是常规辐射效率。仿真结果表明,前者呈现先升后降的趋势,符合贝塞尔光束的成束特性。后者基本上可以在非衍射传播距离内​​保持在70%的高值,这符合非衍射光束的能量传输特性。所有研究表明,基于石墨烯的超表面结合非衍射理论具有太赫兹状态下光束偏转高度可控,聚焦距离长,能量转换效率高的优点,在太赫兹电信领域具有广阔的应用前景。 ,无线能量传输,近场检测,成像和许多其他领域。符合贝塞尔光束的光束形成特性;后者基本上可以在非衍射传播距离内​​保持在70%的高值,这符合非衍射光束的能量传输特性。所有研究表明,基于石墨烯的超表面结合非衍射理论具有太赫兹状态下光束偏转高度可控,聚焦距离长,能量转换效率高的优点,在太赫兹电信领域具有广阔的应用前景。 ,无线能量传输,近场检测,成像和许多其他领域。符合贝塞尔光束的光束形成特性;后者基本上可以在非衍射传播距离内​​保持在70%的高值,这符合非衍射光束的能量传输特性。所有研究表明,基于石墨烯的超表面结合非衍射理论具有太赫兹状态下光束偏转高度可控,聚焦距离长,能量转换效率高的优点,在太赫兹电信领域具有广阔的应用前景。 ,无线能量传输,近场检测,成像和许多其他领域。符合无衍射光束的能量传输特性。所有的研究表明,基于石墨烯的超表面结合非衍射理论具有太赫兹状态下光束偏转高度可控,聚焦距离长,能量转换效率高的优点,因此在太赫兹电信领域具有广阔的应用前景。 ,无线能量传输,近场检测,成像和许多其他领域。符合无衍射光束的能量传输特性。所有研究表明,基于石墨烯的超表面结合非衍射理论具有太赫兹状态下光束偏转高度可控,聚焦距离长,能量转换效率高的优点,在太赫兹电信领域具有广阔的应用前景。 ,无线能量传输,近场检测,成像和许多其他领域。
更新日期:2020-11-17
down
wechat
bug