当前位置: X-MOL 学术Mater. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sub-micrometer and nanoscale imprinting on large-area foils using high-pressure underwater shock waves
Materials & Design ( IF 8.4 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.matdes.2020.109341
Shigeru Tanaka , Kouki Hasegawa , Ivan Bataev , Akihisa Kubota , Kazuyuki Hokamoto

Abstract Laser shock imprinting (LSI) is an emerging method for creating sub-micrometer and nanoscale reliefs on thin metal foils. This report proposes using underwater shockwaves, generated by detonating an explosive charge, for high-quality imprinting as an alternative to LSI. The nanoscale relief of a polycarbonate mold with 740 nm periodic grooves was replicated on an Al foil using an underwater shockwave. Underwater detonation of a high explosive creates a shockwave with pressure ≥ 1 GPa that lasts for more than 100 ns, significantly longer than that for LSI. This provides a relief depth equal to 90% of the depth of the grooves on the mold. This mold filling efficiency is the best achieved by shock imprinting reported to date. In addition, underwater shockwaves can be used for imprinting over a large area in a single shot. Furthermore, the thickness of the Al foil can be increased in comparison to that for LSI. Using a simplified 1-D model of foil acceleration, we showed that increasing the foil thickness decreases the imprinting accuracy. This study paves new ways for large-area manufacturing of micro/nanopatterns on metals that would be especially beneficial for future applications in the fields of plasmonics and metasurfaces.

中文翻译:

使用高压水下冲击波在大面积箔上进行亚微米和纳米级压印

摘要 激光冲击压印 (LSI) 是一种在薄金属箔上创建亚微米和纳米级浮雕的新兴方法。该报告建议使用通过引爆炸药产生的水下冲击波进行高质量压印,作为 LSI 的替代方案。使用水下冲击波在铝箔上复制具有 740 nm 周期性凹槽的聚碳酸酯模具的纳米级浮雕。高爆炸药在水下爆炸会产生压力≥ 1 GPa 的冲击波,持续时间超过 100 ns,明显长于 LSI。这提供了等于模具上凹槽深度 90% 的浮雕深度。这种模具填充效率是迄今为止报道的冲击压印实现的最佳效率。此外,水下冲击波可用于一次性在大面积上进行压印。此外,与 LSI 相比,铝箔的厚度可以增加。使用简化的一维箔加速度模型,我们表明增加箔厚度会降低压印精度。这项研究为在金属上大面积制造微/纳米图案铺平了道路,这对于未来在等离子体和超表面领域的应用尤其有益。
更新日期:2021-01-01
down
wechat
bug