当前位置: X-MOL 学术Chin. Phys. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent progress on excitation and manipulation of spin-waves in spin Hall nano-oscillatorsProject supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300803), the National Natural Science Foundation of China (Grant Nos. 11774150, 12074178, and 12004171), the Applied Basic Research Programs of Science and Technology Commission Foundation of Jiangsu Province, China (Grant No. BK20170627), and the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology.
Chinese Physics B ( IF 1.7 ) Pub Date : 2020-11-17 , DOI: 10.1088/1674-1056/abaed5
Liyuan Li 1 , Lina Chen 1, 2 , Ronghua Liu 1 , Youwei Du 1
Affiliation  

Spin Hall nano oscillator (SHNO), a new type spintronic nano-device, can electrically excite and control spin waves in both nanoscale magnetic metals and insulators with low damping by the spin current due to spin Hall effect and interfacial Rashba effect. Several spin-wave modes have been excited successfully and investigated substantially in SHNOs based on dozens of different ferromagnetic/nonmagnetic (FM/NM) bilayer systems (e.g., FM = Py, [Co/Ni], Fe, CoFeB, Y3Fe5O12; NM = Pt, Ta, W). Here, we will review recent progress about spin-wave excitation and experimental parameters dependent dynamics in SHNOs. The nanogap SHNOs with in-plane magnetization exhibit a nonlinear self-localized bullet soliton localized at the center of the gap between the electrodes and a secondary high-frequency mode which coexists with the primary bullet mode at higher currents. While in the nanogap SHNOs with out of plane magnetization, besides both nonlinear bullet soliton and propagating spin-wave mode are achieved and controlled by varying the external magnetic field and current, the magnetic bubble skyrmion mode also can be excited at a low in-plane magnetic field. These spin-wave modes show thermal-induced mode hopping behavior at high temperature due to the coupling between the modes mediated by thermal magnon mediated scattering. Moreover, thanks to the perpendicular magnetic anisotropy induced effective field, the single coherent mode also can be achieved without applying an external magnetic field. The strong nonlinear effect of spin waves makes SHNOs easy to achieve synchronization with external microwave signals or mutual synchronization between multiple oscillators which improve the coherence and power of oscillation modes significantly. Spin waves in SHNOs with an external free magnetic layer have a wide range of applications from as a nanoscale signal source of low power consumption magnonic devices to spin-based neuromorphic computing systems in the field of artificial intelligence.



中文翻译:

国家重点研发计划(2016YFA0300803)、国家自然科学基金(11774150、12074178、 12004171),江苏省科委基金应用基础研究项目(批准号BK20170627),江苏省纳米技术重点实验室开放研究基金。

自旋霍尔纳米振荡器(SHNO)是一种新型自旋电子纳米器件,由于自旋霍尔效应和界面拉什巴效应,自旋电流具有低阻尼,可以电激发和控制纳米级磁性金属和绝缘体中的自旋波。基于数十种不同的铁磁/非磁 (FM/NM) 双层系统(例如,FM = Py、[Co/Ni]、Fe、CoFeB、Y 3 Fe 5 12 _; NM = Pt、Ta、W)。在这里,我们将回顾有关 SHNO 中自旋波激发和实验参数相关动力学的最新进展。具有面内磁化的纳米间隙 SHNO 表现出位于电极之间间隙中心的非线性自定位子弹孤子和在较高电流下与主要子弹模式共存的次高频模式。而在具有平面外磁化的纳米间隙SHNO中,除了通过改变外部磁场和电流来实现和控制非线性子弹孤子和传播自旋波模式外,磁泡skyrmion模式也可以在低平面内激发磁场。由于热磁振子介导的散射介导的模式之间的耦合,这些自旋波模式在高温下显示出热诱导的模式跳跃行为。此外,由于垂直磁各向异性感应有效场,也可以在不施加外部磁场的情况下实现单相干模式。自旋波的强非线性效应使SHNOs易于实现与外部微波信号的同步或多个振荡器之间的相互同步,显着提高了振荡模式的相干性和功率。具有外部自由磁层的 SHNO 中的自旋波具有广泛的应用,从作为低功耗磁器件的纳米级信号源到人工智能领域的基于自旋的神经形态计算系统。由于垂直磁各向异性感应有效场,单相干模式也可以在不施加外部磁场的情况下实现。自旋波的强非线性效应使SHNOs易于实现与外部微波信号的同步或多个振荡器之间的相互同步,显着提高了振荡模式的相干性和功率。具有外部自由磁层的 SHNO 中的自旋波具有广泛的应用,从作为低功耗磁器件的纳米级信号源到人工智能领域的基于自旋的神经形态计算系统。由于垂直磁各向异性感应有效场,单相干模式也可以在不施加外部磁场的情况下实现。自旋波的强非线性效应使SHNOs易于实现与外部微波信号的同步或多个振荡器之间的相互同步,显着提高了振荡模式的相干性和功率。具有外部自由磁层的 SHNO 中的自旋波具有广泛的应用,从作为低功耗磁器件的纳米级信号源到人工智能领域的基于自旋的神经形态计算系统。自旋波的强非线性效应使SHNOs易于实现与外部微波信号的同步或多个振荡器之间的相互同步,显着提高了振荡模式的相干性和功率。具有外部自由磁层的 SHNO 中的自旋波具有广泛的应用,从作为低功耗磁器件的纳米级信号源到人工智能领域的基于自旋的神经形态计算系统。自旋波的强非线性效应使SHNOs易于实现与外部微波信号的同步或多个振荡器之间的相互同步,显着提高了振荡模式的相干性和功率。具有外部自由磁层的 SHNO 中的自旋波具有广泛的应用,从作为低功耗磁器件的纳米级信号源到人工智能领域的基于自旋的神经形态计算系统。

更新日期:2020-11-17
down
wechat
bug