当前位置: X-MOL 学术J. Cosmol. Astropart. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Projected WIMP sensitivity of the XENONnT dark matter experiment
Journal of Cosmology and Astroparticle Physics ( IF 6.4 ) Pub Date : 2020-11-16 , DOI: 10.1088/1475-7516/2020/11/031
E. Aprile 1 , J. Aalbers 2 , F. Agostini 3 , M. Alfonsi 4 , L. Althueser 5 , F.D. Amaro 6 , V.C. Antochi 2 , E. Angelino 7 , J.R. Angevaare 8 , F. Arneodo 9 , D. Barge 2 , L. Baudis 10 , B. Bauermeister 2 , L. Bellagamba 3 , M.L. Benabderrahmane 9 , T. Berger 11 , A. Brown 10 , E. Brown 11 , S. Bruenner 8 , G. Bruno 9 , R. Budnik 12 , C. Capelli 10 , J.M.R. Cardoso 6 , D. Cichon 13 , B. Cimmino 14 , M. Clark 15 , D. Coderre 16 , A.P. Colijn 8 , J. Conrad 2 , J.P. Cussonneau 17 , M.P. Decowski 8 , A. Depoian 15 , P. Di Gangi 3 , A. Di Giovanni 9 , R. Di Stefano 14 , S. Diglio 17 , A. Elykov 16 , G. Eurin 13 , A.D. Ferella 18, 19 , W. Fulgione 7, 19 , P. Gaemers 8 , R. Gaior 20 , M. Galloway 10 , F. Gao 1 , L. Grandi 21 , C. Hasterok 13 , C. Hils 4 , K. Hiraide 22 , L. Hoetzsch 13 , J. Howlett 1 , M. Iacovacci 14 , Y. Itow 23 , F. Joerg 13 , N. Kato 22 , S. Kazama 23 , M. Kobayashi 1 , G. Koltman 12 , A. Kopec 15 , H. Landsman 12 , R.F. Lang 15 , L. Levinson 12 , Q. Lin 1 , S. Lindemann 16 , M. Lindner 13 , F. Lombardi 6 , J. Long 21 , J.A.M. Lopes 6 , E. López Fune 20 , C. Macolino 24 , J. Mahlstedt 2 , A. Mancuso 3 , L. Manenti 9 , A. Manfredini 10 , F. Marignetti 14 , T. Marrodán Undagoitia 13 , K. Martens 22 , J. Masbou 17 , D. Masson 16 , S. Mastroianni 14 , M. Messina 19 , K. Miuchi 25 , K. Mizukoshi 25 , A. Molinario 19 , K. Morå 1, 2 , S. Moriyama 22 , Y. Mosbacher 12 , M. Murra 5 , J. Naganoma 19 , K. Ni 26 , U. Oberlack 4 , K. Odgers 11 , J. Palacio 13, 17 , B. Pelssers 2 , R. Peres 10 , J. Pienaar 21 , V. Pizzella 13 , G. Plante 1 , J. Qin 15 , H. Qiu 12 , D. Ramírez García 16 , S. Reichard 10 , A. Rocchetti 16 , N. Rupp 13 , J.M.F. dos Santos 6 , G. Sartorelli 3 , N. Šarčević 16 , M. Scheibelhut 4 , J. Schreiner 13 , D. Schulte 5 , M. Schumann 16 , L. Scotto Lavina 20 , M. Selvi 3 , F. Semeria 3 , P. Shagin 27 , E. Shockley 21 , M. Silva 6 , H. Simgen 13 , A. Takeda 22 , C. Therreau 17 , D. Thers 17 , F. Toschi 16 , G. Trinchero 7 , C. Tunnell 27 , K. Valerius 28 , M. Vargas 5 , G. Volta 10 , H. Wang 29 , Y. Wei 26 , C. Weinheimer 5 , M. Weiss 12 , D. Wenz 4 , C. Wittweg 5 , Z. Xu 1 , M. Yamashita 22, 23 , J. Ye 26 , G. Zavattini 3 , Y. Zhang 1 , T. Zhu 1 , J.P. Zopounidis 20
Affiliation  

XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to $13.1 \pm 0.6$ (keV t y)$^{-1}$ and $(2.2\pm 0.5)\times 10^{-3}$ (keV t y)$^{-1}$, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t$\,$y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of $1.4\times10^{-48}$ cm$^2$ for a 50 GeV/c$^2$ mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T. In addition, we show that for a 50 GeV/c$^2$ WIMP with cross-sections above $2.6\times10^{-48}$ cm$^2$ ($5.0\times10^{-48}$ cm$^2$) the median XENONnT discovery significance exceeds 3$\sigma$ (5$\sigma$). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches $2.2\times10^{-43}$ cm$^2$ ($6.0\times10^{-42}$ cm$^2$).

中文翻译:

XENONnT 暗物质实验的预计 WIMP 灵敏度

XENONnT 是暗物质直接探测实验,使用 5.9 吨仪器化液态氙,位于 INFN 国家实验室。在这项工作中,我们预测了实验背景并预测了 XENONnT 对弱相互作用大质量粒子 (WIMP) 检测的敏感性。感兴趣的能量区域的预期平均差分背景率,对应于电子和核反冲的 (1, 13) keV 和 (4, 50) keV,总计 $13.1 \pm 0.6$ (keV ty)$^{-1 }$ 和 $(2.2\pm 0.5)\times 10^{-3}$ (keV ty)$^{-1}$,分别为 4 t 基准质量。我们使用剖面构造方法计算统一的置信区间,以确保适当的覆盖。以 20 t$\,$y 的曝光目标,对于 50 GeV/c$^2$ 质量的 WIMP,在 90% 的置信水平下,对自旋无关 WIMP-核子相互作用的预期敏感性达到 $1.4\times10^{-48}$cm$^2$,更多比 XENON1T 设置的当前最佳限制高出一个数量级。此外,我们表明,对于横截面高于 $2.6\times10^{-48}$ cm$^2$ ($5.0\times10^{-48}$ cm$^2 $) XENONnT 发现显着性的中位数超过 3$\sigma$ (5$\sigma$)。对中子(质子)依赖于自旋的 WIMP 耦合的预期灵敏度达到 $2.2\times10^{-43}$ cm$^2$($6.0\times10^{-42}$ cm$^2$)。6\times10^{-48}$ cm$^2$ ($5.0\times10^{-48}$ cm$^2$) XENONnT 发现显着性的中位数超过 3$\sigma$ (5$\sigma$)。对中子(质子)依赖于自旋的 WIMP 耦合的预期灵敏度达到 $2.2\times10^{-43}$ cm$^2$($6.0\times10^{-42}$ cm$^2$)。6\times10^{-48}$ cm$^2$ ($5.0\times10^{-48}$ cm$^2$) XENONnT 发现显着性的中位数超过 3$\sigma$ (5$\sigma$)。对中子(质子)依赖于自旋的 WIMP 耦合的预期灵敏度达到 $2.2\times10^{-43}$ cm$^2$($6.0\times10^{-42}$ cm$^2$)。
更新日期:2020-11-16
down
wechat
bug