当前位置: X-MOL 学术Biotechnol. Bioeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Studying endothelial cell shedding and orientation using adaptive perfusion‐culture in a microfluidic vascular chip
Biotechnology and Bioengineering ( IF 3.8 ) Pub Date : 2020-11-17 , DOI: 10.1002/bit.27626
Xiang Zhang 1, 2, 3, 4 , Zhenxing Wang 1, 3, 4 , Yu Shrike Zhang 2 , Shujie Yan 1, 3, 4 , Chuanyu Hou 1, 3, 4 , Youping Gong 5 , Jingjiang Qiu 1 , Mo Chen 6 , Qian Li 1, 3, 4
Affiliation  

Most tissue‐engineered blood vessels are endothelialized by static cultures in vitro. However, it has not been clear whether endothelial cell‐shedding and local damage may occur in an endothelial layer formed by static cultures under the effect of blood flow shear postimplantation. In this study, we report a bionic and cost‐effective vascular chip platform, and proved that a static culture of endothelialized tissue‐engineered blood vessels had the problem of a large number of endothelial cells falling off under the condition imitating the human arterial blood flow, and we addressed this challenge by regulating the flow field in a vascular chip. Electrospun membranes made of highly oriented or randomly distributed poly(ε‐caprolactone) fibers were used as the vascular scaffolds, on which endothelial cells proliferated well and eventually formed dense intima layers. We noted that the monolayers gradually adapted to the artery‐like microenvironment through the regulation of chip flow field, which also revealed improved cellular orientations. In conclusion, we have proposed a vascular chip with adaptive flow patterns to gradually accommodate the statically cultured vascular endothelia to the shear environment of arterial flow field and enhanced the orientation of the endothelial cells. This strategy may find numerous potential applications such as screening of vascular engineering biomaterials and maturation parameters, studying of vascular biology and pathology, and construction of vessel‐on‐a‐chip models for drug analysis, among others.

中文翻译:

在微流控血管芯片中使用适应性灌注培养研究内皮细胞脱落和定向

大多数组织工程血管在体外通过静态培养被内皮化。然而,目前尚不清楚在植入后血流剪切作用下静态培养形成的内皮层是否会发生内皮细胞脱落和局部损伤。在这项研究中,我们报道了一种仿生且具有成本效益的血管芯片平台,并证明了内皮化组织工程血管的静态培养在模拟人体动脉血流的条件下存在大量内皮细胞脱落的问题。 ,我们通过调节血管芯片中的流场来解决这一挑战。由高度定向或随机分布的聚(ε-己内酯)纤维制成的电纺膜用作血管支架,其上内皮细胞增殖良好,最终形成致密的内膜层。我们注意到单层膜通过调节芯片流场逐渐适应动脉样微环境,这也揭示了细胞取向的改善。总之,我们提出了一种具有自适应流动模式的血管芯片,以逐渐将静态培养的血管内皮细胞适应动脉流场的剪切环境,并增强内皮细胞的取向。这种策略可能会发现许多潜在的应用,例如血管工程生物材料和成熟参数的筛选、血管生物学和病理学的研究以及用于药物分析的血管芯片模型的构建等。我们注意到单层膜通过调节芯片流场逐渐适应动脉样微环境,这也揭示了细胞取向的改善。总之,我们提出了一种具有自适应流动模式的血管芯片,以逐渐将静态培养的血管内皮细胞适应动脉流场的剪切环境,并增强内皮细胞的取向。这种策略可能会发现许多潜在的应用,例如血管工程生物材料和成熟参数的筛选、血管生物学和病理学的研究以及用于药物分析的血管芯片模型的构建等。我们注意到单层膜通过调节芯片流场逐渐适应动脉样微环境,这也揭示了细胞取向的改善。总之,我们提出了一种具有自适应流动模式的血管芯片,以逐渐将静态培养的血管内皮细胞适应动脉流场的剪切环境,并增强内皮细胞的取向。这种策略可能会发现许多潜在的应用,例如血管工程生物材料和成熟参数的筛选、血管生物学和病理学的研究以及用于药物分析的血管芯片模型的构建等。我们提出了一种具有自适应流动模式的血管芯片,以逐渐将静态培养的血管内皮细胞适应动脉流场的剪切环境,并增强内皮细胞的取向。这种策略可能会发现许多潜在的应用,例如血管工程生物材料和成熟参数的筛选、血管生物学和病理学的研究以及用于药物分析的血管芯片模型的构建等。我们提出了一种具有自适应流动模式的血管芯片,以逐渐将静态培养的血管内皮细胞适应动脉流场的剪切环境,并增强内皮细胞的取向。这种策略可能会发现许多潜在的应用,例如血管工程生物材料和成熟参数的筛选、血管生物学和病理学的研究以及用于药物分析的血管芯片模型的构建等。
更新日期:2021-01-25
down
wechat
bug