当前位置: X-MOL 学术Int. J. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Calculation of mass transfer coefficients for corrosion prediction in two-phase gas-liquid pipe flow
International Journal of Heat and Mass Transfer ( IF 5.2 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.ijheatmasstransfer.2020.120689
Luciano D. Paolinelli , Srdjan Nesic

Abstract Internal corrosion in industrial environments involving gas-liquid flow can be a serious concern. For example, in the oil and gas industry, corrosive water phase is usually transported in pipes along with liquid and/or gas hydrocarbon phases. These gas-liquid flows develop complex flow patterns where the liquid phase can distribute in quite different ways (as stratified layers, intermittent slugs, annular film, etc.) depending on the gas and liquid flow rates and pipe inclination. In these circumstances, the water phase can flow at very high velocities leading to high turbulence and mass transfer rates that can accelerate corrosion of the metallic pipe surface. In general, proper prediction of corrosion rates via mechanistic electrochemical models requires the knowledge of the mass transfer rate of corrosive species in the aqueous phase. There are very few studies in the open literature that show specific experimental data or propose ways to compute mass transfer rates in gas-liquid flow; particularly, for large pipe diameters. The present study introduces a methodology for the estimation of mass transfer rates in gas-liquid flow via the Chilton-Colburn analogy and near-wall eddy diffusivity distribution based on the mechanistic gas-liquid flow modeling. The proposed mechanistic models cover a wide range of fluid's properties and flow rates, different flow patterns and pipe inclinations, and show good agreement with mass transfer experimental data from large-scale gas-liquid flow.

中文翻译:

气液两相管流腐蚀预测传质系数计算

摘要 涉及气液流动的工业环境中的内部腐蚀可能是一个严重的问题。例如,在石油和天然气工业中,腐蚀性水相通常与液态和/或气态烃相一起在管道中输送。这些气液流形成复杂的流动模式,其中液相可以以完全不同的方式分布(如分层层、间歇段塞、环形膜等),具体取决于气体和液体的流速和管道倾角。在这些情况下,水相可以以非常高的速度流动,导致高湍流和传质速率,从而加速金属管表面的腐蚀。一般来说,通过机械电化学模型正确预测腐蚀速率需要了解水相中腐蚀性物质的传质速率。公开文献中很少有研究显示具体的实验数据或提出计算气液流中传质速率的方法;特别是对于大管径。本研究介绍了一种通过 Chilton-Colburn 类比和基于机械气液流动模型的近壁涡扩散分布来估计气液流中传质速率的方法。所提出的力学模型涵盖了广泛的流体特性和流速、不同的流动模式和管道倾角,并且与来自大规模气液流动的传质实验数据显示出良好的一致性。本研究介绍了一种通过 Chilton-Colburn 类比和基于机械气液流动模型的近壁涡扩散分布来估计气液流中传质速率的方法。所提出的力学模型涵盖了广泛的流体特性和流速、不同的流动模式和管道倾角,并且与来自大规模气液流动的传质实验数据显示出良好的一致性。本研究介绍了一种通过 Chilton-Colburn 类比和基于机械气液流动模型的近壁涡扩散分布来估计气液流中传质速率的方法。所提出的力学模型涵盖了广泛的流体特性和流速、不同的流动模式和管道倾角,并且与来自大规模气液流动的传质实验数据显示出良好的一致性。
更新日期:2021-02-01
down
wechat
bug