当前位置: X-MOL 学术Mater. Horiz. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An in situ and rapid self-healing strategy enabling a stretchable nanocomposite with extremely durable and highly sensitive sensing features
Materials Horizons ( IF 13.3 ) Pub Date : 2020-11-06 , DOI: 10.1039/d0mh01539c
Yang Liu 1 , Xiangqian Fan , Weimin Feng , Xinlei Shi , Fengchao Li , Jinhua Wu , Xinyi Ji , Jiajie Liang
Affiliation  

Progress toward the development of wearable electromechanical sensors with durable and reliable sensing performance is critical for emerging wearable integrated electronic applications. However, it remains a long-standing challenge to realize mechanically stretchable sensing materials with extremely durable and high-performing sensing ability due to the fundamental dilemma lying in the sensing mechanism. In this work, we proposed an in situ and rapid self-healing strategy through nano-confining a dynamic host–guest supramolecular polymer network in a graphene-based multilevel nanocomposite matrix to fabricate a mechanically stretchable and structurally healable sensing nanocomposite which is provided with intriguing sensing durability and sensitivity simultaneously. When repeatedly stretching and releasing the nanocomposite sensing film, the fast association kinetics of cyclodextrin and adamantane host–guest inclusion complexes and good polymer chain dynamics in the supramolecular polymer network endowed by the nanoconfinement effect enable autonomous and rapid repair of the micro-cracks in situ generated in the sensing material. As a result, our strain sensing devices can achieve an extremely high durability and retain stable sensing performance even after over 100 000 stretching-releasing cycles at large strain of 50%. Moreover, the brittle nature originated from the inorganically dominated structure in conjunction with the thermodynamically stable host–guest interactions and dynamic hydrogen bonds inside the multilevel nanocomposite allow the sensing material to exhibit an ultrahigh gauge factor over 1500 with a large working strain of 58%. This work presents a reliable approach for the construction of ultradurable and high-performing wearable electronics.

中文翻译:

一种原位和快速的自我修复策略,使可拉伸的纳米复合材料具有极其耐用和高灵敏度的传感特性

开发具有耐用和可靠传感性能的可穿戴机电传感器的进展对于新兴的可穿戴集成电子应用至关重要。然而,由于传感机制的基本困境,实现具有极其耐用和高性能传感能力的机械可拉伸传感材料仍然是一个长期存在的挑战。在这项工作中,我们提出了原位以及通过将动态主客体超分子聚合物网络纳米限制在基于石墨烯的多级纳米复合材料基质中的快速自修复策略来制造机械可拉伸和结构可修复的传感纳米复合材料,该复合材料同时具有有趣的传感耐久性和灵敏度。当反复拉伸和释放纳米复合传感膜时,环糊精和金刚烷主客体包合物的快速缔合动力学以及纳米限制效应赋予的超分子聚合物网络中良好的聚合物链动力学使得能够自主快速地原位修复微裂纹在传感材料中产生。因此,我们的应变传感装置即使在 50% 的大应变下经过 100 000 次以上的拉伸-释放循环后,仍可实现极高的耐用性并保持稳定的传感性能。此外,源自无机主导结构的脆性与多级纳米复合材料内的热力学稳定主客体相互作用和动态氢键相结合,使传感材料表现出超过 1500 的超高规格因子和 58% 的大工作应变。这项工作为构建超耐用和高性能可穿戴电子设备提供了一种可靠的方法。
更新日期:2020-11-27
down
wechat
bug