当前位置: X-MOL 学术Nat. Photon. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lightwave control of topological properties in 2D materials for sub-cycle and non-resonant valley manipulation
Nature Photonics ( IF 35.0 ) Pub Date : 2020-11-16 , DOI: 10.1038/s41566-020-00717-3
Á. Jiménez-Galán , R. E. F. Silva , O. Smirnova , M. Ivanov

Modern light generation technology offers extraordinary capabilities for sculpting light pulses, with full control over individual electric field oscillations within each laser cycle1,2,3. These capabilities are at the core of lightwave electronics—the dream of ultrafast lightwave control over electron dynamics in solids on a sub-cycle timescale, aiming at information processing at petahertz rates4,5,6,7,8. Here, bringing the frequency-domain concept of topological Floquet systems9,10 to the few-femtosecond time domain, we develop a theoretical method that can be implemented with existing technology, to control the topological properties of two-dimensional materials on few-femtosecond timescales by controlling the sub-cycle structure of non-resonant driving fields. We use this method to propose an all-optical, non-element-specific technique, physically transparent in real space, to coherently write, manipulate and read selective valley excitation using fields carried in a wide range of frequencies and on timescales that are orders of magnitude shorter than the valley lifetime, crucial for the implementation of valleytronic devices11,12.



中文翻译:

用于子周期和非共振谷操作的2D材料中拓扑特性的光波控制

现代的光产生技术为雕刻光脉冲提供了非凡的功能,可以完全控制每个激光周期1,2,3中的单个电场振荡。这些功能是光波电子技术的核心-梦想是在一个子周期的时间尺度上实现对固体中电子动力学的超快光波控制,其目标是以4,5,6,7,8皮赫兹的速率进行信息处理。此处介绍了拓扑Floquet系统9,10的频域概念在几飞秒的时域,我们开发了一种可以用现有技术实现的理论方法,通过控制非共振驱动场的子周期结构,在几飞秒的时间尺度上控制二维材料的拓扑特性。我们使用这种方法来提出一种全光学的,非特定于元素的技术,该技术在实际空间中是物理透明的,以使用在宽范围的频率范围内和按时标排列的时域上携带的场来相干地写入,操纵和读取选择性谷激发。幅度比谷值寿命短,这对于实现Valleytronic设备11,12至关重要。

更新日期:2020-11-16
down
wechat
bug