当前位置: X-MOL 学术Transp. Res. Part C Emerg. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic pricing and fleet management for electric autonomous mobility on demand systems
Transportation Research Part C: Emerging Technologies ( IF 8.3 ) Pub Date : 2020-11-16 , DOI: 10.1016/j.trc.2020.102829
Berkay Turan , Ramtin Pedarsani , Mahnoosh Alizadeh

The proliferation of ride sharing systems is a major drive in the advancement of autonomous and electric vehicle technologies. This paper considers the joint routing, battery charging, and pricing problem faced by a profit-maximizing transportation service provider that operates a fleet of autonomous electric vehicles. We first establish the static planning problem by considering time-invariant system parameters and determine the optimal static policy. While the static policy provides stability of customer queues waiting for rides even if consider the system dynamics, we see that it is inefficient to utilize a static policy as it can lead to long wait times for customers and low profits. To accommodate for the stochastic nature of trip demands, renewable energy availability, and electricity prices and to further optimally manage the autonomous fleet given the need to generate integer allocations, a real-time policy is required. The optimal real-time policy that executes actions based on full state information of the system is the solution of a complex dynamic program. However, we argue that it is intractable to exactly solve for the optimal policy using exact dynamic programming methods and therefore apply deep reinforcement learning to develop a near-optimal control policy. The two case studies we conducted in Manhattan and San Francisco demonstrate the efficacy of our real-time policy in terms of network stability and profits, while keeping the queue lengths up to 200 times less than the static policy.



中文翻译:

电动自动驾驶随需应变系统的动态定价和车队管理

乘车共享系统的激增是自动驾驶和电动汽车技术发展的主要动力。本文考虑了运营自动驾驶电动车队的利润最大化的运输服务提供商所面临的联合路线,电池充电和定价问题。我们首先通过考虑时不变的系统参数来建立静态规划问题,并确定最佳的静态策略。尽管即使考虑了系统动态性,静态策略也可以使等待排队的客户队列保持稳定,但我们发现,使用静态策略效率不高,因为静态策略可能导致客户的等待时间较长且利润较低。为了适应旅行需求的随机性,可再生能源的可用性,和电价,以及在需要生成整数分配的情况下进一步优化自治车队的情况,需要实时策略。基于系统的完整状态信息执行动作的最佳实时策略是复杂动态程序的解决方案。但是,我们认为使用精确的动态规划方法来精确求解最优策略是棘手的,因此应用深度强化学习来开发接近最优的控制策略。我们在曼哈顿和旧金山进行的两个案例研究证明了实时策略在网络稳定性和利润方面的功效,同时使队列长度最多比静态策略短200倍。基于系统的完整状态信息执行动作的最佳实时策略是复杂动态程序的解决方案。但是,我们认为使用精确的动态规划方法来精确求解最优策略是棘手的,因此应用深度强化学习来开发接近最优的控制策略。我们在曼哈顿和旧金山进行的两个案例研究证明了实时策略在网络稳定性和利润方面的功效,同时使队列长度最多比静态策略少200倍。基于系统的完整状态信息执行动作的最佳实时策略是复杂动态程序的解决方案。但是,我们认为使用精确的动态规划方法来精确求解最优策略是棘手的,因此应用深度强化学习来开发接近最优的控制策略。我们在曼哈顿和旧金山进行的两个案例研究证明了实时策略在网络稳定性和利润方面的功效,同时使队列长度最多比静态策略少200倍。我们认为,使用精确的动态规划方法来精确求解最优策略是棘手的,因此应用深度强化学习来开发接近最优的控制策略。我们在曼哈顿和旧金山进行的两个案例研究证明了实时策略在网络稳定性和利润方面的功效,同时使队列长度最多比静态策略少200倍。我们认为使用精确的动态规划方法来精确求解最优策略是棘手的,因此应用深度强化学习来开发接近最优的控制策略。我们在曼哈顿和旧金山进行的两个案例研究证明了实时策略在网络稳定性和利润方面的功效,同时使队列长度最多比静态策略少200倍。

更新日期:2020-11-16
down
wechat
bug