当前位置: X-MOL 学术Nonlinear Anal. Hybrid Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hybrid L∞×ℓ∞-performance analysis and control of linear time-varying impulsive and switched positive systems
Nonlinear Analysis: Hybrid Systems ( IF 4.2 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.nahs.2020.100980
Corentin Briat

Abstract Recent works have shown that the L 1 and L ∞ -gains are natural performance criteria for linear positive systems as they can be exactly characterized by linear programs. Those performance measures have also been extended to linear positive impulsive and switched systems through the concept of hybrid L 1 × l 1 -gain. For LTI positive systems, the L ∞ -gain is known to coincide with the L 1 -gain of the transposed system and, as a consequence, one can use linear copositive Lyapunov functions for characterizing the L ∞ -gain of LTI positive systems. Unfortunately, this does not hold in the time-varying setting and one cannot characterize the hybrid L ∞ × l ∞ -gain of a linear positive impulsive system in terms of the hybrid L 1 × l 1 -gain of the transposed system. To solve this, an approach based on the use of linear copositive max-separable Lyapunov functions is proposed. We first prove very general necessary and sufficient conditions characterizing the exponential stability and the L ∞ × l ∞ - and L 1 × l 1 -gains using linear max-separable copositive and linear sum-separable copositive Lyapunov functions. These two results are then connected together using operator theoretic results and the notion of adjoint system. Results characterizing the stability and the hybrid L ∞ × l ∞ -gain of linear positive impulsive systems under arbitrary, constant, minimum, and range dwell-time constraints are then derived from the previously obtained general results. These conditions are then exploited to yield constructive convex stabilization conditions via state-feedback. By reformulating linear positive switched systems as impulsive systems with multiple jump maps, stability and stabilization conditions are also obtained for linear positive switched systems. It is notably proven that the obtained conditions generalize existing ones of the literature. As all the results are stated as infinite-dimensional linear programs, sum of squares programming is used to turn those optimization problems into sufficient tractable finite-dimensional semidefinite programs. Interestingly, the relaxation becomes necessary if we allow the degrees of the polynomials to be arbitrarily large. Several particular cases of the approach such as LTV positive systems and periodic positive systems are also discussed for completeness. Examples are given for illustration.

中文翻译:

混合L∞×ℓ∞-线性时变脉冲和切换正系统的性能分析与控制

摘要 最近的工作表明,L 1 和L ∞ 增益是线性正系统的自然性能标准,因为它们可以通过线性规划精确表征。通过混合 L 1 × l 1 增益的概念,这些性能测量也被扩展到线性正脉冲和开关系统。对于 LTI 正系统,已知 L ∞ 增益与转置系统的 L 1 增益一致,因此,可以使用线性共正李雅普诺夫函数来表征 LTI 正系统的 L ∞ 增益。不幸的是,这在时变设置中不成立,并且不能根据转置系统的混合 L 1 × l 1 -增益来表征线性正脉冲系统的混合 L ∞ × l ∞ -增益。为了解决这个问题,提出了一种基于使用线性共正最大可分李雅普诺夫函数的方法。我们首先使用线性最大可分离共正函数和线性和可分离共正李雅普诺夫函数证明了表征指数稳定性和 L ∞ × l ∞ - 和 L 1 × l 1 - 增益的非常一般的充分必要条件。然后使用算子理论结果和伴随系统的概念将这两个结果连接在一起。表征稳定性和线性正脉冲系统在任意、恒定、最小和范围停留时间约束下的混合 L ∞ × l ∞ -增益的结果然后从先前获得的一般结果导出。然后利用这些条件通过状态反馈产生建设性的凸稳定条件。通过将线性正切换系统重新表述为具有多个跳跃图的脉冲系统,还获得了线性正切换系统的稳定性和稳定条件。值得注意的是,所获得的条件概括了现有文献。由于所有结果都表示为无限维线性规划,因此使用平方和规划将这些优化问题转化为足够易处理的有限维半定规划。有趣的是,如果我们允许多项式的次数任意大,松弛就变得必要了。为了完整性,还讨论了该方法的几个特殊情况,例如 LTV 正系统和周期性正系统。举例说明。对于线性正切换系统,也获得了稳定性和稳定条件。值得注意的是,所获得的条件概括了现有文献。由于所有结果都表示为无限维线性规划,因此使用平方和规划将这些优化问题转化为足够易处理的有限维半定规划。有趣的是,如果我们允许多项式的次数任意大,松弛就变得必要了。为了完整性,还讨论了该方法的几个特殊情况,例如 LTV 正系统和周期性正系统。举例说明。对于线性正切换系统,也获得了稳定性和稳定条件。值得注意的是,所获得的条件概括了现有文献。由于所有结果都表示为无限维线性规划,因此使用平方和规划将这些优化问题转化为足够易处理的有限维半定规划。有趣的是,如果我们允许多项式的次数任意大,松弛就变得必要了。为了完整性,还讨论了该方法的几个特殊情况,例如 LTV 正系统和周期性正系统。举例说明。由于所有结果都表示为无限维线性规划,因此使用平方和规划将这些优化问题转化为足够易处理的有限维半定规划。有趣的是,如果我们允许多项式的次数任意大,松弛就变得必要了。为了完整性,还讨论了该方法的几个特殊情况,例如 LTV 正系统和周期性正系统。举例说明。由于所有结果都表示为无限维线性规划,因此使用平方和规划将这些优化问题转化为足够易处理的有限维半定规划。有趣的是,如果我们允许多项式的次数任意大,松弛就变得必要了。为了完整性,还讨论了该方法的几个特殊情况,例如 LTV 正系统和周期性正系统。举例说明。为了完整性,还讨论了该方法的几个特殊情况,例如 LTV 正系统和周期性正系统。举例说明。为了完整性,还讨论了该方法的几个特殊情况,例如 LTV 正系统和周期性正系统。举例说明。
更新日期:2021-02-01
down
wechat
bug