当前位置: X-MOL 学术At. Sprays › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
EXPERIMENTAL STUDY ON A SINGLE DROPLET AND DROPLET-DROPLET BOILING PHENOMENA
Atomization and Sprays ( IF 1.2 ) Pub Date : 2020-11-01 , DOI: 10.1615/atomizspr.2020035279
Eitan Kompinsky , Yahav Moshkovich , Eran Sher

An experimental-phenomenological study was conducted to explore single droplet and droplet-droplet nucleation, transition, and film boiling characteristics. Major differences were identified for the different boiling processes. For a single droplet impact, we identified 3 evolution stages: temperature rise, nucleation boiling incipience, and bubble growth. For droplet-droplet collision prior to nucleation boiling, we examined cases of off-centered droplet-droplet collisions on a heated surface, where collision occurred prior to boiling incipience, which reveal two impact mechanisms in one system: dry impact and wet collision areas with different characteristics. Different temperature areas result in different boiling incipience and bubble growth time periods. For centered droplet-droplet collision during nucleation boiling, no crown forms were observed. Instead, boiling inhibition occurs, followed by temporary boiling elimination. For off-centered droplet-droplet collision during nucleation boiling, similar behavior was observed, with some directional differences. Boiling inhibition and temporary elimination occur along with the spreading movement of the colliding droplet and the subsequent boiling incipience and bubble growth return in the opposite order. For a single droplet impact followed by the droplet’s film boiling, we identified the droplet bounce as a key parameter that greatly affects the heat transfer regime of the system. Dependence was found between the ratio of film boiling bounce duration and bounce start time, along with the We number and the ratio of surface temperature to the droplet’s initial temperature.

中文翻译:

单滴和滴滴沸腾现象的实验研究

进行了实验现象学研究,以探索单个液滴和液滴-液滴的成核,过渡和膜沸腾特性。确定了不同沸腾过程的主要差异。对于单个液滴撞击,我们确定了3个演化阶段:温度上升,成核沸腾初期和气泡生长。对于成核沸腾之前的液滴-液滴碰撞,我们研究了在加热表面上偏离中心的液滴-液滴碰撞的情况,其中在沸腾开始之前发生了碰撞,这揭示了一个系统中的两种碰撞机理:干碰撞和湿碰撞区域。不同的特征。不同的温度区域会导致不同的沸腾开始时间和气泡生长时间。对于成核沸腾过程中的集中液滴与液滴碰撞,没有观察到冠状。相反,发生沸腾抑制,随后暂时消除沸腾。对于成核沸腾过程中偏离中心的液滴-液滴碰撞,观察到相似的行为,但有一些方向差异。沸腾的抑制和暂时消除与碰撞液滴的扩散运动一起发生,随后的沸腾开始和气泡生长以相反的顺序返回。对于单个液滴的撞击,然后液滴的薄膜沸腾,我们确定液滴的反弹是一个关键参数,它会极大地影响系统的传热方式。发现薄膜沸腾弹跳持续时间与弹跳开始时间之比,We值与表面温度与液滴初始温度之比之间存在依赖性。然后暂时消除沸腾。对于成核沸腾过程中偏离中心的液滴-液滴碰撞,观察到相似的行为,但有一些方向差异。沸腾的抑制和暂时消除与碰撞液滴的扩散运动一起发生,随后的沸腾开始和气泡生长以相反的顺序返回。对于单个液滴的撞击,然后液滴的薄膜沸腾,我们确定液滴的反弹是一个关键参数,它会极大地影响系统的传热方式。发现薄膜沸腾弹跳持续时间与弹跳开始时间之比,We值与表面温度与液滴初始温度之比之间存在依赖性。然后暂时消除沸腾。对于成核沸腾过程中偏离中心的液滴-液滴碰撞,观察到相似的行为,但有一些方向差异。沸腾的抑制和暂时消除与碰撞液滴的扩散运动一起发生,随后的沸腾开始和气泡生长以相反的顺序返回。对于单个液滴的撞击,然后液滴的薄膜沸腾,我们确定液滴的反弹是一个关键参数,它会极大地影响系统的传热方式。发现薄膜沸腾弹跳持续时间与弹跳开始时间之比,We值与表面温度与液滴初始温度之比之间存在依赖性。观察到类似的行为,但有一些方向差异。沸腾的抑制和暂时消除与碰撞液滴的扩散运动一起发生,随后的沸腾开始和气泡生长以相反的顺序返回。对于单个液滴的撞击,然后液滴的薄膜沸腾,我们确定液滴的反弹是一个关键参数,它会极大地影响系统的传热方式。发现薄膜沸腾弹跳持续时间与弹跳开始时间之比,We值与表面温度与液滴初始温度之比之间存在依赖性。观察到类似的行为,但有一些方向差异。沸腾的抑制和暂时消除与碰撞液滴的扩散运动一起发生,随后的沸腾开始和气泡生长以相反的顺序返回。对于单个液滴的撞击,然后液滴的薄膜沸腾,我们确定液滴的反弹是一个关键参数,它会极大地影响系统的传热方式。发现薄膜沸腾弹跳持续时间与弹跳开始时间之比,We值与表面温度与液滴初始温度之比之间存在依赖性。沸腾的抑制和暂时消除与碰撞液滴的扩散运动一起发生,随后的沸腾开始和气泡生长以相反的顺序返回。对于单个液滴的撞击,然后液滴的薄膜沸腾,我们确定液滴的反弹是一个关键参数,它会极大地影响系统的传热方式。发现薄膜沸腾弹跳持续时间与弹跳开始时间之比,We值与表面温度与液滴初始温度之比之间存在依赖性。沸腾的抑制和暂时消除与碰撞液滴的扩散运动一起发生,随后的沸腾开始和气泡生长以相反的顺序返回。对于单个液滴的撞击,然后液滴的薄膜沸腾,我们确定液滴的反弹是一个关键参数,它会极大地影响系统的传热方式。发现薄膜沸腾弹跳持续时间与弹跳开始时间之比,We值与表面温度与液滴初始温度之比之间存在依赖性。
更新日期:2020-11-15
down
wechat
bug