当前位置: X-MOL 学术Catal. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dual-function surface hydrogen bonds enable robust O2 activation for deep photocatalytic toluene oxidation
Catalysis Science & Technology ( IF 5 ) Pub Date : 2020-10-29 , DOI: 10.1039/d0cy01907k
Hao Li 1, 2, 3, 4, 5 , Fuze Jiang 1, 2, 3, 4, 5 , Sarka Drdova 1, 2, 3, 4, 5 , Huan Shang 6, 7, 8, 9, 10 , Lizhi Zhang 6, 7, 8, 9, 10 , Jing Wang 1, 2, 3, 4, 5
Affiliation  

Solar-driven molecular oxygen activation by semiconductor photocatalysts is a prototypical reaction manifesting complex interactions among photons, charge carriers, and reactants. In this study, we demonstrate that energetic O2 activation towards volatile organic compound control can be realized via constructing a sophisticated surface hydrogen bond (HB) network having a dual-function. The extensive HBs established between the hydroxyl-rich BiOCl surface and phosphoric acid are first shown to significantly weaken surface Bi–O bonds, enabling facile oxygen vacancy (OV) generation. OVs, which act as reliable electron capture and static O2 activation centers, reinforce the interaction between photons and excitons for rapid charge carrier separation. Moreover, dynamic O2 activation with sluggish kinetics can be surmounted by another type of HB localized between hydroxyl groups of phosphoric acid and OV-adsorbed O2. These unique localized HBs facilitate interfacial electron transfer from BiOCl to O2, displaying a unique energy coupling route between charge carriers and reactants. For simulated indoor toluene oxidation, the substantially boosted O2 activation is shown to accelerate the kinetic processes associated with the primary oxidation of toluene into benzaldehyde and benzoic acid, as well as aromatic ring opening towards deep oxidation. Undesirable intermediate accumulation and catalyst deactivation are thus avoided. The present work highlights the pivotal roles of HBs in robust photocatalytic O2 activation. It will provide novel insights into the design of high-performance catalysts for efficient and safe control of indoor volatile organic compounds.

中文翻译:

双功能表面氢键可实现强大的O2活化,以实现深度光催化甲苯氧化

半导体光催化剂通过太阳能驱动的分子氧活化是一种典型的反应,表明光子,电荷载体和反应物之间存在复杂的相互作用。在这项研究中,我们证明可以通过构建具有双重功能的复杂表面氢键(HB)网络来实现对挥发性有机化合物控制的高能O 2活化。首先表明,在富含羟基的BiOCl表面和磷酸之间建立的大量HBs显着削弱了表面Bi-O键,从而易于产生氧空位(OV)。OV,用作可靠的电子捕获和静态O 2活化中心可增强光子与激子之间的相互作用,从而快速分离载流子。此外,可以通过位于磷酸的羟基和OV吸附的O 2之间的另一种类型的HB来克服具有缓慢动力学的动态O 2活化。这些独特的局部HBs促进了界面电子从BiOCl转移到O 2,从而在电荷载流子和反应物之间显示出独特的能量耦合路径。对于模拟的室内甲苯氧化,可大幅提高O 2活化被证明可加速与甲苯初次氧化为苯甲醛和苯甲酸有关的动力学过程,以及芳烃向深层氧化的开环。因此避免了不希望的中间积累和催化剂失活。本工作强调了HBs在强大的光催化O 2活化中的关键作用。它将为高效和安全地控制室内挥发性有机化合物的高性能催化剂的设计提供新颖的见解。
更新日期:2020-11-15
down
wechat
bug