当前位置: X-MOL 学术Sci. China Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Orbital-regulated interfacial electronic coupling endows Ni 3 N with superior catalytic surface for hydrogen evolution reaction
Science China Chemistry ( IF 9.6 ) Pub Date : 2020-09-28 , DOI: 10.1007/s11426-020-9839-y
Yanyan Fang , Da Sun , Shuwen Niu , Jinyan Cai , Yipeng Zang , Yishang Wu , Linqin Zhu , Yufang Xie , Yun Liu , Zixuan Zhu , Amirabbas Mosallanezhad , Di Niu , Zheng Lu , Junjie Shi , Xiaojing Liu , Dewei Rao , Gongming Wang , Yitai Qian

The interstitial structure and weak Ni-N interaction of Ni3N lead to high unoccupied d orbital energy and unsuitable orbital orientation, which consequently results in weak orbital coupling with H2O and slow water dissociation kinetics for alkaline hydrogen evolution catalysis. Herein, we successfully lower the unoccupied d orbital energy of Ni3N to strengthen the interfacial electronic coupling by employing the strong electron pulling capability of oxygen dopants. The prepared O-Ni3N catalyst delivers an overpotential of 55 mV at 10 mA cm−2, very close to the commercial Pt/C. Refined structural characterization indicates the oxygen incorporation can decrease the electron densities around the Ni sites. Moreover, density functional theory calculation further proves the oxygen incorporation can create more unoccupied orbitals with lower energy and superior orientation for water adsorption and dissociation. The concept of orbital-regulated interfacial electronic coupling could offer a unique approach for the rational design of hydrogen evolution catalysts and beyond.



中文翻译:

轨道调控的界面电子耦合赋予Ni 3 N优异的催化表面,以进行氢气释放反应

Ni 3 N的间隙结构和弱的Ni-N相互作用导致较高的空位d轨道能和不合适的轨道取向,从而导致与H 2 O的轨道耦合弱,并且水解离动力学缓慢,从而无法进行碱性氢的释放催化。在本文中,我们通过利用氧掺杂剂的强电子吸引能力,成功降低了Ni 3 N的未占据d轨道能量,从而增强了界面电子耦合。制备的O-Ni 3 N催化剂在10 mA cm -2时提供55 mV的过电势,非常接近商业Pt / C。精细的结构表征表明,氧的引入可以降低Ni位周围的电子密度。而且,密度泛函理论计算进一步证明了氧的结合可以产生更多的空轨道,具有较低的能量和较高的取向,以利于水的吸附和分解。轨道调节界面电子耦合的概念可以为氢析出催化剂的合理设计及其他提供独特的方法。

更新日期:2020-11-15
down
wechat
bug