当前位置: X-MOL 学术Int. J. Intell. Robot. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust state dependent Riccati equation variable impedance control for robotic force-tracking tasks
International Journal of Intelligent Robotics and Applications Pub Date : 2020-11-15 , DOI: 10.1007/s41315-020-00153-0
Loris Roveda , Dario Piga

Industrial robots are increasingly used in highly flexible interaction tasks, where the intrinsic variability makes difficult to pre-program the manipulator for all the different scenarios. In such applications, interaction environments are commonly (partially) unknown to the robot, requiring the implemented controllers to take in charge for the stability of the interaction. While standard controllers are sensor-based, there is a growing need to make sensorless robots (i.e., most of the commercial robots are not equipped with force/torque sensors) able to sense the environment, properly reacting to the established interaction. This paper proposes a new methodology to sensorless force control manipulators. On the basis of sensorless Cartesian impedance control, an Extended Kalman Filter (EKF) is designed to estimate the interaction exchanged between the robot and the environment. Such an estimation is then used in order to close a robust high-performance force loop, designed exploiting a variable impedance control and a State Dependent Riccati Equation (SDRE) force controller. The described approach has been validated in simulations. A Franka EMIKA panda robot has been considered as a test platform. A probing task involving different materials (i.e., with different stiffness properties) has been considered to show the capabilities of the developed EKF (able to converge with limited errors) and controller (preserving stability and avoiding overshoots). The proposed controller has been compared with an LQR controller to show its improved performance.



中文翻译:

机器人力跟踪任务的鲁棒状态依赖的Riccati方程可变阻抗控制

工业机器人越来越多地用于高度灵活的交互任务中,其中固有的可变性使得难以针对所有不同场景对机械手进行预编程。在此类应用中,机器人通常(部分)不知道交互环境,因此需要实现的控制器负责交互的稳定性。尽管标准控制器是基于传感器的,但越来越需要使无传感器机器人(即,大多数商用机器人未配备力/转矩传感器)能够感知环境,并对已建立的交互做出适当反应。本文提出了一种无传感器力控制机械手的新方法。在无传感器笛卡尔阻抗控制的基础上,设计了扩展卡尔曼滤波器(EKF)来估计机器人与环境之间交换的相互作用。然后使用这种估计来闭合鲁棒的高性能力环路,该环路利用可变阻抗控制和状态相关Riccati方程(SDRE)力控制器进行设计。所描述的方法已经在仿真中得到验证。Franka EMIKA熊猫机器人已被视为测试平台。已经考虑了涉及不同材料(即具有不同刚度特性)的探测任务,以显示已开发的EKF(能够以有限的误差收敛)和控制器的功能(保持稳定性并避免过冲)。建议的控制器已与LQR控制器进行了比较,以显示其改进的性能。然后使用这种估计来闭合鲁棒的高性能力环路,该环路利用可变阻抗控制和状态相关Riccati方程(SDRE)力控制器进行设计。所描述的方法已经在仿真中得到验证。Franka EMIKA熊猫机器人已被视为测试平台。已经考虑了涉及不同材料(即具有不同刚度特性)的探测任务,以显示已开发的EKF(能够以有限的误差收敛)和控制器的功能(保持稳定性并避免过冲)。建议的控制器已与LQR控制器进行了比较,以显示其改进的性能。然后使用这种估计来闭合鲁棒的高性能力环路,该环路利用可变阻抗控制和状态相关Riccati方程(SDRE)力控制器进行设计。所描述的方法已经在仿真中得到验证。Franka EMIKA熊猫机器人已被视为测试平台。已经考虑了涉及不同材料(即具有不同刚度特性)的探测任务,以显示已开发的EKF(能够以有限的误差收敛)和控制器的功能(保持稳定性并避免过冲)。建议的控制器已与LQR控制器进行了比较,以显示其改进的性能。所描述的方法已经在仿真中得到验证。Franka EMIKA熊猫机器人已被视为测试平台。已经考虑了涉及不同材料(即具有不同刚度特性)的探测任务,以显示已开发的EKF(能够以有限的误差收敛)和控制器的功能(保持稳定性并避免过冲)。建议的控制器已与LQR控制器进行了比较,以显示其改进的性能。所描述的方法已经在仿真中得到验证。Franka EMIKA熊猫机器人已被视为测试平台。已经考虑了涉及不同材料(即具有不同刚度特性)的探测任务,以显示已开发的EKF(能够以有限的误差收敛)和控制器的功能(保持稳定性并避免过冲)。建议的控制器已与LQR控制器进行了比较,以显示其改进的性能。

更新日期:2020-11-15
down
wechat
bug