当前位置: X-MOL 学术J. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electronic couplings for photo-induced processes from subsystem time-dependent density-functional theory: The role of the diabatization
The Journal of Chemical Physics ( IF 4.4 ) Pub Date : 2020-11-12 , DOI: 10.1063/5.0022677
Johannes Tölle 1 , Lorenzo Cupellini 2 , Benedetta Mennucci 2 , Johannes Neugebauer 1
Affiliation  

Subsystem time-dependent density-functional theory (sTDDFT) making use of approximate non-additive kinetic energy (NAKE) functionals is known to be capable of describing excitation energy transfer processes in a variety of applications. Here, we show that sTDDFT, especially when combined with projection-based embedding (PbE), can be employed for the entire range of photo-induced electronic couplings essential for modeling photophysical properties of complex chemical and biological systems and therefore represents a complete toolbox for this class of problems. This means that it is capable of capturing the interaction/coupling associated with local- and charge-transfer (CT) excitons. However, this requires the choice of a reasonable diabatic basis. We therefore propose different diabatization strategies of the virtual orbital space in PbE-sTDDFT and show how CT excitations can be included in sTDDFT using NAKE functionals via a phenomenological approach. Finally, these electronic couplings are compared to couplings from a multistate fragment excitation difference (FED)–fragment charge difference (FCD) diabatization procedure. We show that both procedures, multistate FED–FCD and sTDDFT (with the right diabatization procedure chosen), lead to an overall good agreement for the electronic couplings, despite differences in their general diabatization strategy. We conclude that the entire range of photo-induced electronic couplings can be obtained using sTDDFT (with the right diabatization procedure chosen) in a black-box manner.

中文翻译:

子系统随时间变化的密度泛函理论的光致过程电子耦合:绝热作用

子系统时间依赖的密度泛函理论(sTDDFT),利用近似的非累加动能(NAKE)泛函,能够描述各种应用中的激发能传递过程。在这里,我们表明sTDDFT,尤其是与基于投影的嵌入(PbE)结合使用时,可用于对复杂化学和生物系统的光物理性质进行建模所必需的整个光感应电子耦合范围,因此代表了完整的工具箱这类问题。这意味着它能够捕获与局部和电荷转移(CT)激子相关的相互作用/耦合。但是,这需要选择合理的绝热基础。因此,我们提出了PbE-sTDDFT中虚拟轨道空间的不同绝热策略,并展示了如何使用NAKE功能通过现象学方法将CT激发包括在sTDDFT中。最后,将这些电子耦合与来自多态碎片激发差(FED)-片段电荷差(FCD)透化过程的耦合进行比较。我们显示,尽管它们的总体绝热策略有所不同,但多状态FED-FCD和sTDDFT(选择了正确的绝热程序)这两种程序都能为电子联轴器带来总体良好的协议。我们得出的结论是,使用sTDDFT(选择了正确的透湿程序)可以以黑盒方式获得光感应电子耦合的整个范围。
更新日期:2020-11-13
down
wechat
bug