当前位置: X-MOL 学术Macromol. Mater. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cryo‐3D Printing of Hierarchically Porous Polyhydroxymethylene Scaffolds for Hard Tissue Regeneration
Macromolecular Materials and Engineering ( IF 3.9 ) Pub Date : 2020-11-12 , DOI: 10.1002/mame.202000541
Benjamin Stolz 1, 2 , Markus Mader 1, 2 , Lukas Volk 3, 4 , Thorsten Steinberg 3 , Rolf Mülhaupt 1, 2
Affiliation  

High molecular weight polyhydroxymethylene (PHM) has a repeat unit identical to that of low molecular weight sugar alcohols and exhibits carbohydrate‐like properties. Herein, cryogenic extrusion‐based 3D printing is combined with a phase separation in water to fabricate hierarchically porous PHM scaffolds containing interconnected macro‐, micro‐, and nanopores. As PHM is infusible and insoluble in common solvents, its precursor polyvinylene carbonate (PVCA) dissolved in dimethylsulfoxide (DMSO) is used to 3D print hierarchically porous PVCA scaffolds that are converted into PHM by hydrolysis without impairing the pore architectures. Similar to low‐temperature deposition manufacturing, the PVCA/DMSO freezes on a build platform at −78 °C. However, instead of removing the frozen solvent by sublimation, the frozen scaffold is immersed in water to recover DMSO and to effect phase separation by precipitation. However, the computer‐guided printhead pathway controls macropore formation phase separation of frozen PVCA/DMSO upon contact with water accounts for simultaneous micro‐ and nanopore formation. Contrary to 3D printing of PVCA/DMSO at ambient temperature, this cryo‐3D printing process does not require shear thinning additives and affords significantly improved build precision with macropore sizes variable between 200 and 1500 µm. Cryo‐3D‐printed PHM scaffolds are biocompatible and promote osteoblast proliferation.

中文翻译:

多层多孔聚羟基亚甲基支架的低温3D打印用于硬组织再生

高分子量聚羟基亚甲基(PHM)具有与低分子量糖醇相同的重复单元,并表现出类似碳水化合物的特性。在此,将基于低温挤压的3D打印与水中的相分离相结合,以制造包含相互连接的大孔,微孔和纳米孔的分层多孔PHM支架。由于PHM不溶且不溶于普通溶剂,因此将其溶于二甲基亚砜(DMSO)中的前体碳酸亚乙烯酯(PVCA)用于3D打印分层的多孔PVCA支架,该支架通过水解转化为PHM,而不会损害孔结构。与低温沉积制造相似,PVCA / DMSO在−78°C的构建平台上冻结。但是,除了通过升华除去冷冻的溶剂外,将冷冻的支架浸入水中以回收DMSO,并通过沉淀进行相分离。但是,计算机引导的打印头途径可控制与水接触的冷冻PVCA / DMSO的大孔形成相分离,从而同时形成微孔和纳米孔。与在环境温度下进行PVCA / DMSO的3D打印相反,此cryo-3D打印过程不需要剪切稀化添加剂,并且大孔尺寸在200至1500 µm之间变化时,可显着提高构建精度。冷冻3D打印的PHM支架具有生物相容性,可促进成骨细胞增殖。计算机引导的打印头途径可控制与水接触的冷冻PVCA / DMSO的大孔形成相分离,从而同时形成微孔和纳米孔。与在环境温度下进行PVCA / DMSO的3D打印相反,此cryo-3D打印过程不需要剪切稀化添加剂,并且大孔尺寸在200至1500 µm之间变化时,可显着提高构建精度。冷冻3D打印的PHM支架具有生物相容性,可促进成骨细胞增殖。计算机引导的打印头途径可控制与水接触的冷冻PVCA / DMSO的大孔形成相分离,从而同时形成微孔和纳米孔。与在环境温度下进行PVCA / DMSO的3D打印相反,此cryo-3D打印过程不需要剪切稀化添加剂,并且大孔尺寸在200至1500 µm之间变化时,可显着提高构建精度。冷冻3D打印的PHM支架具有生物相容性,可促进成骨细胞增殖。
更新日期:2021-01-16
down
wechat
bug