当前位置: X-MOL 学术Int. J. Mech. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Shock Responses of Nanoporous Gold Subjected to Dynamic Loadings: Energy Absorption
International Journal of Mechanical Sciences ( IF 7.3 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.ijmecsci.2020.106191
Jiejie Li , Chenyao Tian , Wenjie Hong , Shuaichen Duan , Yuhang Zhang , Wenwang Wu , Guoming Hu , Re Xia

Abstract Using the finite element analysis, we investigate the shock response, deformation behavior and energy–absorbing characteristics of stochastic bicontinuous nanoporous gold computationally, considering the effects of impact speed and relative density of materials. Three deformation modes during shocking, quasi–static compression, transition state and dynamic compression, are observed with the increasing impact speeds and the corresponding internal deformation mechanisms are demonstrated. The shock response under low–speed loading is similar to the R–LHP–L materials model, and it is more inclined to the R–S–H model as the impact speed rises. The peak stress, plateau stress, densification strain, energy, specific energy absorption (per unit volume) are assessed quantitatively. The peak stress shows a monotonous increase with impact speed, due to the enhanced inertial effect. The plateau stress and energy–absorbing efficiency are insensitive to low impact velocity, but significantly enhanced under high–speed loading. Remarkably, the results show that the energy absorption efficiency of nanoporous gold is better than conventional foam materials and nanofluidic energy absorption and dissipation system. The research not only further clarifies the shock responses and associated mechanisms of NPG, but also promotes its industrial application as an energy–absorbing material.

中文翻译:

纳米多孔金在动态载荷作用下的冲击响应:能量吸收

摘要 利用有限元分析,我们考虑了冲击速度和材料相对密度的影响,通过计算研究了随机双连续纳米多孔金的冲击响应、变形行为和能量吸收特性。随着冲击速度的增加,观察到了冲击、准静态压缩、过渡态和动态压缩三种变形模式,并展示了相应的内部变形机制。低速载荷下的冲击响应与R-LHP-L材料模型相似,随着冲击速度的升高,更倾向于R-S-H模型。定量评估峰值应力、平台应力、致密化应变、能量、比能量吸收(每单位体积)。峰值应力随冲击速度单调增加,由于惯性效应增强。平台应力和能量吸收效率对低冲击速度不敏感,但在高速加载下显着增强。值得注意的是,结果表明纳米多孔金的能量吸收效率优于传统泡沫材料和纳米流体能量吸收和耗散系统。该研究不仅进一步阐明了 NPG 的冲击响应和相关机制,而且还促进了其作为吸能材料的工业应用。结果表明,纳米多孔金的能量吸收效率优于传统泡沫材料和纳米流体吸能消散系统。该研究不仅进一步阐明了 NPG 的冲击响应和相关机制,而且还促进了其作为吸能材料的工业应用。结果表明,纳米多孔金的能量吸收效率优于传统泡沫材料和纳米流体吸能消散系统。该研究不仅进一步阐明了 NPG 的冲击响应和相关机制,而且还促进了其作为吸能材料的工业应用。
更新日期:2021-02-01
down
wechat
bug