当前位置: X-MOL 学术Compos. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Laser Induced Graphene for In-Situ Ballistic Impact Damage and Delamination Detection in Aramid Fiber Reinforced Composites
Composites Science and Technology ( IF 9.1 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.compscitech.2020.108551
Kelsey Steinke , LoriAnne Groo , Henry A. Sodano

Abstract Aramid fiber reinforced polymer composites have been shown to exhibit impressive mechanical properties, including high strength-to-weight ratio, excellent abrasion resistance, and exceptional ballistic performance. For these reasons, aramid composites have been heavily used in high impact loading environments where ballistic properties are vital. In-situ damage monitoring of aramid composites under dynamic loading conditions typically requires externally bonded sensors, which add bulk and are limited by size and space constraints. To overcome these limitations, this work presents a piezoresistive laser induced graphene (LIG) interface for embedded impact sensing in aramid fiber reinforced composites. Through the monitoring of electrical impedance during ballistic impact, information regarding time and severity of the impact is obtained. The impact velocity correlates with the impedance change of the composites, due to delamination between aramid plies and damage to the LIG interface. The delamination length in Mode I specimens also correlates to changes in electrical impedance of the composite. The interlaminar fracture toughness and areal-density-specific V50 of the LIG aramid composites increased relative to untreated aramid composites. This work demonstrates a methodology to form multifunctional aramid-based composites with a LIG interface that provides both improved toughness and imbedded sensing of impact and damage severity during ballistic impact.

中文翻译:

激光诱导石墨烯用于芳纶纤维增强复合材料中的原位弹道冲击损伤和分层检测

摘要 芳纶纤维增强聚合物复合材料已被证明具有令人印象深刻的机械性能,包括高强度重量比、优异的耐磨性和卓越的防弹性能。由于这些原因,芳纶复合材料已大量用于高冲击载荷环境,其中弹道性能至关重要。在动态载荷条件下对芳纶复合材料进行原位损伤监测通常需要外部粘合传感器,这会增加体积并受尺寸和空间限制。为了克服这些限制,这项工作提出了一种压阻式激光诱导石墨烯(LIG)界面,用于在芳纶纤维增强复合材料中嵌入冲击传感。通过在弹道撞击过程中监测电阻抗,可以获得有关撞击时间和严重程度的信息。由于芳纶层之间的分层和 LIG 界面的损坏,冲击速度与复合材料的阻抗变化相关。模式 I 样品中的分层长度也与复合材料电阻抗的变化相关。与未处理的芳纶复合材料相比,LIG 芳纶复合材料的层间断裂韧性和面密度特定 V50 有所增加。这项工作展示了一种形成多功能芳纶基复合材料的方法,该复合材料具有 LIG 界面,可在弹道冲击过程中提供更高的韧性和嵌入感测冲击和损坏严重程度。模式 I 样品中的分层长度也与复合材料电阻抗的变化相关。与未处理的芳纶复合材料相比,LIG 芳纶复合材料的层间断裂韧性和面密度特定 V50 有所增加。这项工作展示了一种形成多功能芳纶基复合材料的方法,该复合材料具有 LIG 界面,可在弹道冲击过程中提供更高的韧性和嵌入感测冲击和损坏严重程度。模式 I 样品中的分层长度也与复合材料电阻抗的变化相关。与未处理的芳纶复合材料相比,LIG 芳纶复合材料的层间断裂韧性和面密度特定 V50 有所增加。这项工作展示了一种形成多功能芳纶基复合材料的方法,该复合材料具有 LIG 界面,可在弹道冲击过程中提供更高的韧性和嵌入感测冲击和损坏严重程度。
更新日期:2021-01-01
down
wechat
bug