当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstructure evolution and intermediate phase-induced varying solubility limits and stress reduction behavior in sodium ion batteries particles of NaxFePO4 (0
Journal of Power Sources ( IF 9.2 ) Pub Date : 2020-11-09 , DOI: 10.1016/j.jpowsour.2020.229187
Tao Zhang , Marc Kamlah

The cathode material NaxFePO4 (0<x<1) of sodium-ion batteries displays complex phase segregation processes with the existence of an intermediate phase, and large volume change during charging/discharging. A chemo-mechanical phase-field model is developed to capture the thermodynamics of phase segregation along with the structural change that occurs in NaxFePO4. The multiwell potential of NaxFePO4 for the full range of concentration is constructed for the first time. This new model not only captures phase segregation into a sodium-poor phase FePO4 and a sodium-rich phase Na23FePO4 but also the solid-solution phase NaxFePO4 (23<x<1). The microstructure evolution in the whole processes of sodiation and desodiation is investigated. The stress assisted diffusion induces the striking behavior of the maximum solubility limit going beyond 2/3 even within two-phase coexistence. Further, the formation of an intermediate phase leads to varying solubility limits which agrees with recent experimental observation, as well as a stress reduction behavior. Finally, our work suggests that prolate NaxFePO4 particles are mechanically more reliable due to nearly stress-free phases. We expect that the intermediate phase-induced stress reduction behavior provides a new concept for improving mechanical stability and thus better battery performance.



中文翻译:

钠离子电池钠颗粒的微观结构演变和中间相诱导的变化溶解度极限和应力降低行为X磷酸铁40<X<1个

正极材料NaX磷酸铁40<X<1个钠离子电池的)显示复杂的相分离过程,存在中间相,并且在充电/放电过程中体积变化很大。建立化学机械相场模型以捕获相分离的热力学以及在Na中发生的结构变化X磷酸铁4。Na的多孔势X磷酸铁4首次建立了完整的浓度范围。这个新模型不仅捕获了相分离成贫钠的FePO4 和富钠相 ñ一种23FËPØ4 还有固溶相NaX磷酸铁423<X<1个)。研究了整个消沉过程的微观结构演变。应力辅助扩散引起最大溶解度极限的惊人行为,甚至在两相共存时也超过2/3。此外,中间相的形成导致变化的溶解度极限,这与最近的实验观察一致,并且具有应力降低行为。最后,我们的工作表明NaX磷酸铁4由于几乎没有应力,因此颗粒在机械上更可靠。我们期望中间相诱导的应力降低行为提供了一个新的概念,以改善机械稳定性并因此改善电池性能。

更新日期:2020-12-03
down
wechat
bug