当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Elucidating the role of surface states of BiVO4 with Mo doping and a CoOOH co-catalyst for photoelectrochemical water splitting
Journal of Power Sources ( IF 9.2 ) Pub Date : 2020-11-10 , DOI: 10.1016/j.jpowsour.2020.229080
Rambabu Yalavarthi , Radek Zbořil , Patrik Schmuki , Alberto Naldoni , Štěpán Kment

Bismuth vanadate (BiVO4) is a promising material for photoelectrochemical (PEC) water splitting, however, its PEC performance is limited by the high surface and bulk charge recombination rates. Here we present a comprehensive study to elucidate a recombination phenomenon of BiVO4 that arises with Mo doping. The Mo doping produces multiple effects including the formation of MoOx (reduced form of Mo6+) species and oxygen vacancies (VOs) on the surface of the BiVO4 that work in tandem with V4+ species (and MoOx) acting as surface-active intermediates (i-SS) providing improved hole transfer to the electrolyte. In contrast, in the absence of V4+ species, the VOs can act as recombination centers (r-SS). Further, CoOOH co-catalyst coating is used to minimize such recombination centers. Eventually, a photocurrent enhancement of ~37 times (1.1 mA/cm2 at 1.23 V vs. RHE) and a cathodic shift in onset potential of ~500 mV compared to that of pristine BiVO4 (0.03 mA/cm2 at 1.23 V vs. RHE) is obtained. We carried out in-depth PEC analysis using hole scavenger measurements, PEC impedance spectroscopy, and intensity-modulated photocurrent spectroscopy to elucidate the effect of the surface reduction process upon doping, the impact of Vos, MoOx species and CoOOH layer on the enhanced PEC performance.



中文翻译:

阐明了Mo掺杂和CoOOH助催化剂在光电化学水分解中BiVO 4的表面状态的作用

钒酸铋(BiVO 4)是用于光电化学(PEC)水分解的一种有前途的材料,但是,其PEC性能受到高表面电荷和大量电荷复合率的限制。在这里,我们提出了一项全面的研究,以阐明Mo掺杂引起的BiVO 4的重组现象。Mo掺杂产生多种效应,包括形成MoO x(Mo 6+的还原形式)和BiVO 4表面上与V 4+物种(和MoO x)协同作用的氧空位(V O s)。作为表面活性中间体(SS)改善了空穴向电解质的转移。与此相反,在不存在第V 4+物种中,V ø S可充当复合中心(ř -SS)。此外,使用CoOOH助催化剂涂层来最小化这种复合中心。最终,与原始BiVO 4相比,光电流提高了约37倍(1.23 V时相对于RHE为1.1 mA / cm 2),起始电位的阴极位移为约500 mV(相对于1.23 V时为0.03 mA / cm 2。 (RHE)。我们使用空穴清除剂测量,PEC阻抗谱和强度调制光电流谱进行了深入的PEC分析,以阐明表面还原工艺对掺杂的影响,Vos,MoO的影响x物种和CoOOH层增强了PEC性能。

更新日期:2020-11-12
down
wechat
bug