当前位置: X-MOL 学术Prog. Photovoltaics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interface analysis of ultrathin SiO2 layers between c‐Si substrates and phosphorus‐doped poly‐Si by theoretical surface potential analysis using the injection‐dependent lifetime
Progress in Photovoltaics ( IF 6.7 ) Pub Date : 2020-11-09 , DOI: 10.1002/pip.3338
Sungjin Choi 1, 2 , Jimin Baek 1, 3 , Taejun Kim 4 , Kwan Hong Min 1, 5 , Myeong Sang Jeong 1, 5 , Hee‐eun Song 1 , Min Gu Kang 1 , Donghwan Kim 2, 5 , Yoonmook Kang 2 , Hae‐Seok Lee 2 , Jae‐Min Myoung 3 , Sungeun Park 1
Affiliation  

Passivated contact structures are often representative of tunnel oxide passivated contact (TOPCon) and polycrystalline silicon on oxide (POLO) solar cells. These passivated contact technologies in silicon solar cells have experienced great strides in efficiency. However, characteristics analysis of poly‐Si/SiO2 applied to TOPCon and POLO solar cells as a carrier‐selective and passivated contact is still challenging because the silicon oxide film is very thin (<1.5 nm), poly‐Si and silicon oxide properties change during thermal treatment for passivation effects, and dopant diffusion from poly‐Si layer to the silicon wafer occurs. In this study, the interfacial analysis was performed by applying an algorithm based on the extended Shockley–Read–Hall (SRH) theory to the P‐doped poly‐Si/SiO2/c‐Si structure. Quantitative parameters of the P‐doped poly‐Si/SiO2/c‐Si interface were extracted by fitting the measured and simulated lifetime curves with algorithms, such as Dit (interface trap density) and Qf (fixed charge), from which we were able to elucidate the passivation effect of the interface. The interface analysis method using this algorithm is meaningful in that it can quantify the passivation characteristics of TOPCon with very thin silicon oxide film. The interface characteristics were also analyzed using the injection‐dependent lifetime after thermal treatment of P‐doped poly‐Si/SiO2/c‐Si samples for passivation effect. After the 850°C thermal treatment, the following best passivation effects were verified, namely, ψs = 0.248 eV, Dit = 1.0 × 1011 cm−2·eV−1, Qf = 2.4 × 1012 cm−2, and J02 = 370 pA·cm−2. Through the analysis model using carrier lifetime theory, we investigated quantitatively the passivation properties of P‐doped poly‐Si/SiO2/c‐Si.

中文翻译:

通过使用注入依赖寿命的理论表面电势分析,对c-Si衬底与磷掺杂的多晶硅之间的超薄SiO2层进行界面分析

钝化接触结构通常代表隧道氧化物钝化接触(TOPCon)和氧化硅多晶硅(POLO)太阳能电池。硅太阳能电池中的这些钝化接触技术在效率方面取得了长足的进步。然而,由于氧化硅膜非常薄(<1.5 nm),多晶硅和氧化硅特性,应用于TOPCon和POLO太阳能电池的作为载流子选择和钝化接触的多晶硅/ SiO 2的特性分析仍然具有挑战性。热处理过程中会因钝化效应而发生变化,从而导致掺杂剂从多晶硅层扩散到硅晶片。在这项研究中,界面分析是通过将基于扩展的Shockley-Read-Hall(SRH)理论的算法应用于P掺杂的poly-Si / SiO 2/ c-Si结构。P型掺杂的多晶硅/二氧化硅的定量参数2 / C-Si界面通过拟合用算法,如所测量的和模拟的寿命曲线提取d(界面陷阱密度)和Q ˚F(固定电荷),从该我们能够阐明界面的钝化效果。使用该算法的界面分析方法意义重大,因为它可以量化具有非常薄的氧化硅膜的TOPCon的钝化特性。界面特性还使用了掺杂P的poly-Si / SiO 2热处理后注入依赖的寿命进行了分析/ c-Si样品的钝化效果。在850℃热处理后,以下最好的钝化效果进行了验证,即ψ小号= 0.248 eV的,d= 1.0×10 11厘米-2 ·eV的-1Q ˚F = 2.4×10 12厘米-2,并且J 02= 370pA·cm -2。通过使用载流子寿命理论的分析模型,我们定量研究了P掺杂的多晶硅/ SiO 2 / c-Si的钝化性能。
更新日期:2020-12-16
down
wechat
bug