当前位置: X-MOL 学术Adv. Mater. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Programmable Building Blocks via Internal Stress Engineering for 3D Collective Assembly
Advanced Materials Technologies ( IF 6.8 ) Pub Date : 2020-11-10 , DOI: 10.1002/admt.202000758
Woongbi Cho 1 , Dong Yoon Hahm 2 , Jae Ha Yim 2 , Jun Hee Lee 2 , Yun Ju Lee 2 , Dong‐Gyun Kim 3 , Yong Seok Kim 3 , Jeong Jae Wie 1
Affiliation  

The collective assembly of finite building blocks can induce complicated scaled‐up architecture for structural diversity and multifunctionality. In this study, the concept of 2D to 3D shape morphing via frontal photopolymerization is employed for the rapid and repetitive fabrication of geometrically tailorable building blocks. The photoabsorber generates an internal stress gradient which induces a mismatch of volumetric shrinkage within a photocured monolithic 3D structure. The final 3D curvilinear architecture is investigated through systematic analysis by controlling the spatiotemporal conditions of 3D shape morphing. The spatiotemporal effect consists of pre/postcuring methods and geometry of the 2D patterns inspired by fractal elements including even/odd condition, spirality, and self‐similarity. Finally, the concept of collective assembly is introduced to construct multiple objective architectures. Each morphed structure contributes to the assembly of hierarchical 3D structures as a building block. Inspired by famous architectures, the collective hierarchical 3D structures are demonstrated by replicating the form of certain landmarks. In addition, scaled‐up assembled 3D structure can withstand 150 times of its own weight and can be applied for the frame of electronic devices. The collective assembly of programmable building blocks has the potential for various versatile applications in rapid prototypes of optical metamaterials, antennas, and curved electronic devices.

中文翻译:

通过内部应力工程实现3D集体装配的可编程基块

有限构件的集体组装可以引发复杂的按比例放大的架构,以实现结构多样性和多功能性。在这项研究中,通过正面光聚合进行2D到3D形状变形的概念被用于快速重复地制造可几何调整的构建基块。光吸收剂产生内部应力梯度,该内部应力梯度引起光固化的整体式3D结构内体积收缩的失配。通过控制3D形状变形的时空条件,通过系统分析来研究最终的3D曲线体系结构。时空效应包括2D图案的前/后固化方法和几何形状,其受分形元素(包括偶/奇条件,螺旋度和自相似性)启发。最后,引入了集体装配的概念来构造多个目标体系结构。每个变形结构都有助于将分层3D结构作为构造块进行组装。受著名建筑的启发,通过复制某些地标的形式来演示集体分层3D结构。此外,按比例放大的组装3D结构可承受其自重的150倍,并可应用于电子设备的框架。可编程构件的集体组装具有在光学超材料,天线和弯曲电子设备的快速原型中用于各种通用应用的潜力。受著名建筑的启发,通过复制某些地标的形式来演示集体分层3D结构。此外,按比例放大的组装3D结构可承受其自重的150倍,并可应用于电子设备的框架。可编程构件的集体组装具有在光学超材料,天线和弯曲电子设备的快速原型中用于各种通用应用的潜力。受著名建筑的启发,通过复制某些地标的形式来演示集体分层3D结构。此外,按比例放大的组装3D结构可承受其自重的150倍,并可应用于电子设备的框架。可编程构件的集体组装具有在光学超材料,天线和弯曲电子设备的快速原型中用于各种通用应用的潜力。
更新日期:2020-12-09
down
wechat
bug