当前位置: X-MOL 学术Plasma Chem. Plasma Proc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spatial Variations of Plasma Parameters in a Hollow Cathode Discharge
Plasma Chemistry and Plasma Processing ( IF 3.6 ) Pub Date : 2020-11-10 , DOI: 10.1007/s11090-020-10137-4
S. N. Andreev , A. V. Bernatskiy , V. N. Ochkin

The transformations of the electron energy distribution (EEDF), their concentration, and plasma space potential along the discharge gap between the hollow rectangular cathode and the mesh anode were experimentally studied. The discharge was 3 cm long, with a cross-section of 10 cm2. A new version of measurements with several single probes with the formation of current-voltage characteristics (IVC) in the probe circuit was proposed with the simultaneous application of voltages in the form of a combination of periodic and noise signals. The proportions of the signals were varied for different sections of the current-voltage characteristics. Measurements along the central axis of the discharge were taken. The dynamic range of the EEDF was not less than 4 orders of magnitude at the electron concentrations of 2–13 × 1010 cm−3, which exceeds the best known achievements. Measurements for discharge in helium at reduced pressures of 1–1.2 mbar and currents of 150–400 mA showed that the EEDFs differ from Maxwell ones, with an excess of fast electrons in the region of 10–20 eV at medium energies 4–6 eV. The fraction of fast electrons decreased in regions closer to the anode, which is associated with the nonlocality of the mechanism of the spectrum formation of free electrons. EEDFs transformations led to the space dependence of electron drift velocities on the plasma area. The dependence of the voltage drop across the cathode on the gas pressure and discharge current was noted.

中文翻译:

空心阴极放电等离子体参数的空间变化

实验研究了沿空心矩形阴极和网状阳极之间放电间隙的电子能量分布(EEDF)、它们的浓度和等离子体空间电位的转变。放电长 3 cm,横截面为 10 cm2。提出了一种新版本的测量,使用多个单探头,在探头电路中形成电流 - 电压特性 (IVC),同时应用周期性和噪声信号组合形式的电压。对于电流-电压特性的不同部分,信号的比例是不同的。沿着放电的中心轴进行测量。在电子浓度为 2–13 × 1010 cm−3 时,EEDF 的动态范围不小于 4 个数量级,这超过了最著名的成就。在 1-1.2 mbar 的减压和 150-400 mA 的电流下对氦气放电的测量表明,EEDF 与麦克斯韦的不同,在 4-6 eV 的中等能量下,在 10-20 eV 范围内有过量的快电子. 在靠近阳极的区域中,快电子的比例减少,这与自由电子光谱形成机制的非局域性有关。EEDF 转换导致电子漂移速度对等离子体区域的空间依赖性。注意到阴极两端的电压降对气体压力和放电电流的依赖性。在 4-6 eV 的中等能量下,在 10-20 eV 范围内有过量的快电子。在靠近阳极的区域,快电子的比例减少,这与自由电子光谱形成机制的非局域性有关。EEDF 转换导致电子漂移速度对等离子体区域的空间依赖性。注意到阴极两端的电压降对气体压力和放电电流的依赖性。在 4-6 eV 的中等能量下,在 10-20 eV 范围内有过量的快电子。在靠近阳极的区域,快电子的比例减少,这与自由电子光谱形成机制的非局域性有关。EEDF 转换导致电子漂移速度对等离子体区域的空间依赖性。注意到阴极两端的电压降对气体压力和放电电流的依赖性。
更新日期:2020-11-10
down
wechat
bug