当前位置: X-MOL 学术PLOS Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
SiCTeC: An inexpensive, easily assembled Peltier device for rapid temperature shifting during single-cell imaging
PLOS Biology ( IF 9.8 ) Pub Date : 2020-11-06 , DOI: 10.1371/journal.pbio.3000786
Benjamin D Knapp 1 , Lillian Zhu 2 , Kerwyn Casey Huang 1, 2, 3, 4
Affiliation  

Single-cell imaging, combined with recent advances in image analysis and microfluidic technologies, have enabled fundamental discoveries of cellular responses to chemical perturbations that are often obscured by traditional liquid-culture experiments. Temperature is an environmental variable well known to impact growth and to elicit specific stress responses at extreme values; it is often used as a genetic tool to interrogate essential genes. However, the dynamic effects of temperature shifts have remained mostly unstudied at the single-cell level, due largely to engineering challenges related to sample stability, heatsink considerations, and temperature measurement and feedback. Additionally, the few commercially available temperature-control platforms are costly. Here, we report an inexpensive (<$110) and modular Single-Cell Temperature Controller (SiCTeC) device for microbial imaging—based on straightforward modifications of the typical slide-sample-coverslip approach to microbial imaging—that controls temperature using a ring-shaped Peltier module and microcontroller feedback. Through stable and precise (±0.15°C) temperature control, SiCTeC achieves reproducible and fast (1–2 min) temperature transitions with programmable waveforms between room temperature and 45°C with an air objective. At the device’s maximum temperature of 89°C, SiCTeC revealed that Escherichia coli cells progressively shrink and lose cellular contents. During oscillations between 30°C and 37°C, cells rapidly adapted their response to temperature upshifts. Furthermore, SiCTeC enabled the discovery of rapid morphological changes and enhanced sensitivity to substrate stiffness during upshifts to nonpermissive temperatures in temperature-sensitive mutants of cell-wall synthesis enzymes. Overall, the simplicity and affordability of SiCTeC empowers future studies of the temperature dependence of single-cell physiology.



中文翻译:

SiCTeC:一种廉价、易于组装的 Peltier 装置,用于在单细胞成像过程中实现快速温度变化

单细胞成像与图像分析和微流体技术的最新进展相结合,使人们能够基本发现细胞对化学扰动的反应,而传统的液体培养实验往往掩盖了这一点。众所周知,温度是一个环境变量,会影响生长并在极端值下引发特定的应激反应。它经常被用作询问必需基因的遗传工具。然而,由于与样品稳定性、散热器考虑以及温度测量和反馈相关的工程挑战,温度变化的动态效应在单细胞水平上仍未得到研究。此外,少数商用温度控制平台价格昂贵。在这里,我们报告了一种用于微生物成像的廉价(<110 美元)和模块化单细胞温度控制器 (SiCTeC) 设备,该设备基于对微生物成像的典型载玻片-样品-盖玻片方法的直接修改,使用环形传感器控制温度Peltier 模块和微控制器反馈。通过稳定而精确的 (±0.15°C) 温度控制,SiCTeC 通过空气物镜在室温和 45°C 之间的可编程波形实现可重复且快速(1-2 分钟)的温度转换。在设备的最高温度 89°C 下,SiCTeC 显示大肠杆菌细胞逐渐缩小并失去细胞内容物。在 30°C 至 37°C 之间振荡期间,细胞迅速适应温度升高的反应。此外,SiCTeC 还发现了细胞壁合成酶温度敏感突变体在升高到不允许温度期间的快速形态变化,并增强了对基质刚度的敏感性。总体而言,SiCTeC 的简单性和经济性有助于未来研究单细胞生理学的温度依赖性。

更新日期:2020-11-09
down
wechat
bug