当前位置: X-MOL 学术Thin Solid Films › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hundred-fold reduction in Iron diffusivity in titanium nitride diffusion barrier on steel by microstructure engineering
Thin Solid Films ( IF 2.1 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.tsf.2020.138416
Pankaj Kumar , Jithin M.A. , S. Mohan , Sushobhan Avasthi

Abstract Titanium nitride (TiN) barrier films can enhance the efficiency of thin-film solar cells on steel by preventing Fe contamination in semiconductor layers. This work uses microstructure engineering to obtain low diffusivity of iron in TiN barrier layers. Three different microstructures were analyzed, each obtained by tuning deposition parameters using pulsed direct current sputtering. We show that metal diffusion in TiN proceeds via two mechanisms – bulk and grain-boundary diffusion. The performance of polycrystalline TiN barrier layers is limited by grain-boundary diffusion. By tuning the microstructure, a remarkably low diffusivity was achieved, only 1.5 × 10 − 18 c m 2 s − 1 at 700°C, a 100-fold improvement over the state-of-the-art. Activation energy suggests that the diffusion in TiN barrier proceeds via N-vacancies, not grain-boundary defects. For application where electrical insulation is also required, the TiN can be combined with insulating SiNx to form a bilayer barrier, without any loss in performance. The optimized TiN barrier can also be used for stainless steel with a Fe diffusivity of just 9 × 10 − 18 c m 2 s − 1 at 700°C. However, the TiN barrier on stainless steel suffers from very high chromium diffusion, a previously unknown effect. This suggests that counter to accepted wisdom; stainless steel is not always superior to mild-steel for electronic applications. The work provides quantitative data to aid design of diffusion barriers for electronic devices on steel.

中文翻译:

通过微观结构工程将钢上氮化钛扩散阻挡层中的铁扩散率降低一百倍

摘要 氮化钛 (TiN) 阻挡膜可以通过防止半导体层中的 Fe 污染来提高钢上薄膜太阳能电池的效率。这项工作使用微结构工程在 TiN 阻挡层中获得铁的低扩散率。分析了三种不同的微观结构,每种微观结构都是通过使用脉冲直流溅射调整沉积参数获得的。我们表明,TiN 中的金属扩散通过两种机制进行——体扩散和晶界扩散。多晶 TiN 阻挡层的性能受到晶界扩散的限制。通过调整微观结构,实现了非常低的扩散率,在 700°C 下仅为 1.5 × 10 - 18 cm 2 s - 1,比现有技术提高了 100 倍。活化能表明 TiN 势垒中的扩散通过 N 空位进行,不是晶界缺陷。对于还需要电绝缘的应用,TiN 可以与绝缘的 SiNx 结合形成双层屏障,而不会降低性能。优化的 TiN 阻挡层也可用于在 700°C 下 Fe 扩散率仅为 9 × 10 − 18 cm 2 s − 1 的不锈钢。然而,不锈钢上的 TiN 阻挡层受到非常高的铬扩散的影响,这是以前未知的影响。这表明这与公认的智慧背道而驰;对于电子应用,不锈钢并不总是优于低碳钢。这项工作提供了定量数据,以帮助设计钢上电子设备的扩散屏障。优化的 TiN 阻挡层也可用于在 700°C 下 Fe 扩散率仅为 9 × 10 − 18 cm 2 s − 1 的不锈钢。然而,不锈钢上的 TiN 阻挡层受到非常高的铬扩散的影响,这是以前未知的影响。这表明这与公认的智慧背道而驰;对于电子应用,不锈钢并不总是优于低碳钢。这项工作提供了定量数据,以帮助设计钢上电子设备的扩散屏障。优化的 TiN 阻挡层也可用于在 700°C 下 Fe 扩散率仅为 9 × 10 − 18 cm 2 s − 1 的不锈钢。然而,不锈钢上的 TiN 阻挡层受到非常高的铬扩散的影响,这是以前未知的影响。这表明这与公认的智慧背道而驰;对于电子应用,不锈钢并不总是优于低碳钢。这项工作提供了定量数据,以帮助设计钢上电子设备的扩散屏障。
更新日期:2020-12-01
down
wechat
bug