当前位置: X-MOL 学术Radiat. Phys. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Validation of two calculation options built in Elekta Monaco Monte Carlo based algorithm using MCNP code
Radiation Physics and Chemistry ( IF 2.9 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.radphyschem.2020.109237
Manda Švabić Kolacio , Hrvoje Brkić , Dario Faj , Đeni Smilović Radojčić , David Rajlić , Nevena Obajdin , Slaven Jurković

Abstract Introduction The calculation algorithm for intensity modulated radiotherapy (IMRT) built in the Elekta Monaco treatment planning system (TPS) is based on Monte Carlo (MC) simulation. Absorbed dose is calculated as dose to medium in medium (Dm,m), but the conversion from Dm,m to dose to water in medium (Dw,m) is enabled. According to published data, differences between these two options exist, particularly in bony structures. In this study, comparisons between dose calculation options built in Elekta Monaco TPS and Monte Carlo N-Particle transport code® (MCNP) in different materials are shown. Furthermore, the majority of clinical experience is based on the dose to water in water (Dw,w) concept provided by analytical algorithms and has represented the standard for dose calculation over the past few decades. Additionally, MCNP calculation was performed to simulate the Dw,w concept. Therefore, the correlation between Dw,w concept, and both calculation options provided by the Elekta Monaco TPS was determined. Materials and methods To evaluate the accuracy of TPS calculation options for 6MV photon beam, MCNP simulation was performed for 13 different materials with mass densities ranging from 0.2 g/cm3 to 2.17 g/cm3 using simplified geometry. The simulation was performed in two ways: with standard material representation taking into account their chemical compositions and corresponding mass densities and using non-standard material representation employing chemical composition of water with varying mass densities. Depth dose curves (DDs) calculated by MCNP were compared to those obtained by two calculation options Dm,m and Dw,m using Root Mean Square (RMS) deviations. Results RMS deviations between depth dose curves (DDs), for Dm,m and Dw,m become largest for mass density 2.17 g/cm3, up to RMS=13%. Comparison for both calculation options to the MCNP defined for Dm,m shows very good agreement, with RMS deviation less than 3% for the majority of examined materials. For the Dw,m calculation option results are acceptable in mass density range from 0.5 g/cm3 (RMS=1.4%) to 1.06 g/cm3 (RMS=2.4%). For the rest of examined materials, RMS deviation increases, with a maximal value of 12.4%. Absorbed dose calculation comparison between Dw,m and non-standard MCNP shows large deviations for the majority of used materials, up to RMS=13.1%. RMS deviations between Dm,m calculation option and non-standard MCNP are much lower than one might expect. For the highest mass density in this research (ρ=2.17 g/cm3), the RMS deviation is 3.7%. Conclusion Although it does not take into account the chemical composition of the medium, TPS calculation option Dm,m shows very good agreement with standard MCNP calculations. Furthermore, in our research, it is demonstrated that the Dw,m calculation option differs substantially from Dw,w. Additionally, it was found that for different materials absorbed dose calculated as Dm,m shows better agreement to the algorithms that calculate absorbed dose using Dw,w approach. Although the research was performed on simplified geometry, the Results indicate that the use of Dm,m could be preferable in order to allow better consistency with previous clinical data in radiation oncology.

中文翻译:

使用 MCNP 代码验证基于 Elekta Monaco Monte Carlo 算法的两个计算选项

摘要 简介 Elekta Monaco 治疗计划系统(TPS) 中内置的调强放射治疗(IMRT) 的计算算法基于蒙特卡罗(MC) 模拟。吸收剂量计算为介质中的介质剂量 (Dm,m),但可以将 Dm,m 转换为介质中水的剂量 (Dw,m)。根据已发表的数据,这两种选择之间存在差异,特别是在骨结构方面。在本研究中,比较了 Elekta Monaco TPS 和 Monte Carlo N-Particle transport code® (MCNP) 中不同材料的剂量计算选项。此外,大多数临床经验基于分析算法提供的水中水剂量 (Dw,w) 概念,并代表了过去几十年的剂量计算标准。此外,执行 MCNP 计算以模拟 Dw,w 概念。因此,确定了 Dw,w 概念与 Elekta Monaco TPS 提供的两个计算选项之间的相关性。材料和方法 为了评估 6MV 光子束 TPS 计算选项的准确性,使用简化的几何形状对质量密度范围为 0.2 g/cm3 至 2.17 g/cm3 的 13 种不同材料进行了 MCNP 模拟。模拟以两种方式进行:标准材料表示考虑到它们的化学成分和相应的质量密度,使用非标准材料表示,采用不同质量密度的水的化学成分。将 MCNP 计算的深度剂量曲线 (DDs) 与使用均方根 (RMS) 偏差的两个计算选项 Dm,m 和 Dw,m 获得的曲线进行比较。结果 深度剂量曲线 (DD) 之间的 RMS 偏差对于 Dm,m 和 Dw,m 变得最大,质量密度为 2.17 g/cm3,达到 RMS=13%。两种计算选项与为 Dm,m 定义的 MCNP 的比较显示出非常好的一致性,大多数检查材料的 RMS 偏差小于 3%。对于 Dw,m 计算选项,质量密度范围为 0.5 g/cm3 (RMS=1.4%) 到 1.06 g/cm3 (RMS=2.4%) 的结果是可以接受的。对于其余检查材料,RMS 偏差增加,最大值为 12.4%。Dw,m 和非标准 MCNP 之间的吸收剂量计算比较显示,大多数使用的材料都有很大的偏差,高达 RMS=13.1%。Dm,m 计算选项与非标准 MCNP 之间的 RMS 偏差远低于人们的预期。对于本研究中的最高质量密度 (ρ=2.17 g/cm3),RMS 偏差为 3.7%。结论 尽管没有考虑介质的化学成分,TPS 计算选项 Dm,m 显示出与标准 MCNP 计算非常吻合。此外,在我们的研究中,证明 Dw,m 计算选项与 Dw,w 有很大不同。此外,发现对于不同的材料,以 Dm,m 计算的吸收剂量与使用 Dw,w 方法计算吸收剂量的算法显示出更好的一致性。尽管研究是在简化几何结构上进行的,但结果表明使用 Dm,m 可能更可取,以便与以前的放射肿瘤学临床数据保持更好的一致性。m 与标准 MCNP 计算非常吻合。此外,在我们的研究中,证明 Dw,m 计算选项与 Dw,w 有很大不同。此外,发现对于不同的材料,以 Dm,m 计算的吸收剂量与使用 Dw,w 方法计算吸收剂量的算法显示出更好的一致性。尽管研究是在简化几何结构上进行的,但结果表明使用 Dm,m 可能更可取,以便与以前的放射肿瘤学临床数据保持更好的一致性。m 与标准 MCNP 计算非常吻合。此外,在我们的研究中,证明 Dw,m 计算选项与 Dw,w 有很大不同。此外,发现对于不同的材料,以 Dm,m 计算的吸收剂量与使用 Dw,w 方法计算吸收剂量的算法显示出更好的一致性。尽管研究是在简化几何结构上进行的,但结果表明使用 Dm,m 可能更可取,以便与以前的放射肿瘤学临床数据保持更好的一致性。m 显示出更符合使用 Dw,w 方法计算吸收剂量的算法。虽然研究是在简化的几何形状上进行的,但结果表明使用 Dm,m 可能更可取,以便与以前的放射肿瘤学临床数据保持更好的一致性。m 显示出更符合使用 Dw,w 方法计算吸收剂量的算法。尽管研究是在简化几何结构上进行的,但结果表明使用 Dm,m 可能更可取,以便与以前的放射肿瘤学临床数据保持更好的一致性。
更新日期:2021-02-01
down
wechat
bug