当前位置: X-MOL 学术Contrib. Mineral. Petrol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experiments on phosphate–silicate liquid immiscibility with potential links to iron oxide apatite and nelsonite deposits
Contributions to Mineralogy and Petrology ( IF 3.5 ) Pub Date : 2020-11-08 , DOI: 10.1007/s00410-020-01751-8
Haroldo L. Lledo , H. Richard Naslund , David M. Jenkins

The formation of phosphorus–iron oxide (P–Fe) immiscible melts and their possible connection to the genesis of Kiruna-type and Nelsonite deposits was experimentally investigated by adding phosphoric acid (H3PO4), water, and sulfur, to andesite at 100–450 MPa, 500–900 °C, at the NiNiO and magnetite-hematite fO2 buffers using internally heated gas vessels. The addition of up to 8.02 wt% of H3PO4 to the andesite causes crystallization of apatite. At higher concentrations of H3PO4 whitlockite crystallizes, and at concentrations above ~ 11.4% H3PO4 (at 800 °C, 385 MPa) an immiscible P–Fe melt forms. Adding sulfur at low fO2 (NiNiO) causes an additional immiscible Fe–S melt to form. Increasing the fO2 to the hematite-magnetite buffer causes the sulfur-rich melt to shift in composition to a Ca–S–O melt, and the coexisting P-Fe melt to incorporate large amounts of SO4. Immiscible P-Fe melts can form at temperatures above 1100 °C down to 600 °C (at 400 MPa). Mass balance calculations show that some experimentally produced P-Fe rich immiscible liquids may result in mineral assemblages similar to those found at some Kiruna-type deposits, such as actinolite-rich dikes, and apatite-rich veins. Depending on the geological conditions and the composition the fractionation of a P-Fe melt may result in the formation of nelsonites at high pressures, high temperatures, and low fO2 or Kiruna-type deposits at lower temperatures and higher fO2.

中文翻译:

磷酸盐-硅酸盐液体不混溶性实验与氧化铁磷灰石和菱镁矿矿床的潜在联系

通过在 100-450 的温度下向安山岩中添加磷酸 (H3PO4)、水和硫,对磷-铁氧化物 (P-Fe) 不混溶熔体的形成及其与基律纳型和奈尔松石矿床成因的可能联系进行了实验研究MPa,500–900 °C,在 NiNiO 和磁铁矿-赤铁矿 fO2 缓冲液中使用内部加热的气体容器。向安山岩中添加高达 8.02 wt% 的 H3PO4 会导致磷灰石结晶。在较高浓度的 H3PO4 白镁石结晶时,当 H3PO4 浓度高于 ~ 11.4%(800 °C,385 MPa)时,会形成不混溶的 P-Fe 熔体。在低 fO2 (NiNiO) 下添加硫会导致形成额外的不混溶 Fe-S 熔体。增加赤铁矿-磁铁矿缓冲液的 fO2 会导致富含硫的熔体的成分转变为 Ca-S-O 熔体,和共存的 P-Fe 熔体掺入大量 SO4。不混溶的 P-Fe 熔体可在 1100 °C 以上至 600 °C(400 MPa)的温度下形成。质量平衡计算表明,一些实验产生的富含 P-Fe 的不混溶液体可能会产生类似于在一些基律纳型矿床中发现的矿物组合,例如富含阳起石的岩脉和富含磷灰石的矿脉。根据地质条件和成分,P-Fe 熔体的分馏可能会导致在高压、高温和低 fO2 下形成镍橄榄石或在较低温度和更高 fO2 下形成 Kiruna 型沉积物。质量平衡计算表明,一些实验产生的富含 P-Fe 的不混溶液体可能会产生类似于在一些基律纳型矿床中发现的矿物组合,例如富含阳起石的岩脉和富含磷灰石的矿脉。根据地质条件和成分,P-Fe 熔体的分馏可能会导致在高压、高温和低 fO2 下形成镍橄榄石或在较低温度和更高 fO2 下形成 Kiruna 型沉积物。质量平衡计算表明,一些实验产生的富含 P-Fe 的不混溶液体可能会产生类似于在一些基律纳型矿床中发现的矿物组合,例如富含阳起石的岩脉和富含磷灰石的矿脉。根据地质条件和成分,P-Fe 熔体的分馏可能会导致在高压、高温和低 fO2 下形成镍橄榄石或在较低温度和更高 fO2 下形成 Kiruna 型沉积物。
更新日期:2020-11-08
down
wechat
bug