当前位置: X-MOL 学术Int. J. Appl. Electromagn. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dissipative effects on a chemically and thermally radiative heat fluid flow past a shrinking porous sheet
International Journal of Applied Electromagnetics and Mechanics ( IF 0.6 ) Pub Date : 2020-11-02 , DOI: 10.3233/jae-201540
A. Shahid 1 , M. Ali Abbas 2 , H.L. Huang 1 , S.R. Mishra 3 , M.M. Bhatti 4, 5
Affiliation  

The present study analyses the dissipative influence into an unsteady electrically conducting fluid flow embedded in a pervious medium over a shrinkable sheet. The behavior of thermal radiation and chemical reactions are also contemplated. The governing partial differential equations are reformed to ordinary differential equations by operating similarity transformations. The numerical outcomes for the arising non-linear boundary value problem are determined by implementing the Successive linearization method (SLM) via Matlab software. The velocity, temperature, and concentration magnitudes for distant values of the governing parametric quantities are conferred, and their conduct is debated via graphical curves. The surface drag coefficient increases, whereas the local Nusselt number and Sherwood number decreases for enhancing unsteadiness parameter across suction parameter. Moreover, the magnetic and suction parameters accelerate velocity magnitudes while by raising porosity parameter, velocity decelerates. Larger numeric of thermal radiation parameter and Eckert number accelerates the temperature profile while by enhancing Prandtl number it decelerates. Schmidt number and chemical reaction parameters slowdowns the concentration distribution, and the chemical reaction parameter influences on the point of chemical reaction that benefits the interface mass transfer. It is expected that the current achieved results will furnish fruitful knowledge in industrious utilities.

中文翻译:

对化学和热辐射热流体流过收缩多孔板的耗散影响

本研究分析了将耗散影响转化为一种不稳定的导电流体流,该流体流嵌入在可收缩薄片上的渗透介质中。还考虑了热辐射和化学反应的行为。通过操作相似性变换,控制的偏微分方程被重组成常微分方程。通过使用Matlab软件实施连续线性化方法(SLM),可以确定出现的非线性边界值问题的数值结果。给出了控制参数量的远值的速度,温度和浓度大小,并通过图形曲线讨论了它们的行为。表面阻力系数增加,而局部Nusselt数和Sherwood数减小,以增强整个吸力参数的不稳定参数。此外,磁参数和吸力参数会加快速度幅度,而通过提高孔隙率参数会降低速度。较大的热辐射参数数值和Eckert数会加快温度曲线,而通过提高Prandtl数会使其减速。施密特数和化学反应参数会减慢浓度分布,并且化学反应参数会影响有利于界面传质的化学反应点。预期当前取得的成果将为工业提供丰富的知识。磁参数和吸力参数会加快速度幅度,而通过提高孔隙率参数会降低速度。较大的热辐射参数数值和Eckert数会加快温度曲线,而通过提高Prandtl数会使其减速。施密特数和化学反应参数会减慢浓度分布,并且化学反应参数会影响有利于界面传质的化学反应点。预期当前取得的成果将为工业提供丰富的知识。磁参数和吸力参数会加快速度幅度,而通过提高孔隙率参数会降低速度。较大的热辐射参数数值和Eckert数会加快温度曲线,而通过提高Prandtl数会使其减速。施密特数和化学反应参数会减慢浓度分布,并且化学反应参数会影响有利于界面传质的化学反应点。预期当前取得的成果将为工业提供丰富的知识。施密特数和化学反应参数会减慢浓度分布,并且化学反应参数会影响有利于界面传质的化学反应点。预期当前取得的成果将为工业提供丰富的知识。施密特数和化学反应参数会减慢浓度分布,并且化学反应参数会影响有利于界面传质的化学反应点。预期当前取得的成果将为工业提供丰富的知识。
更新日期:2020-11-06
down
wechat
bug