当前位置: X-MOL 学术Steel Res. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Continuous Severe Plastic Deformation of Low‐Carbon Steel: Physical–Mechanical Properties and Multiscale Structure Analysis
Steel Research International ( IF 2.2 ) Pub Date : 2020-11-06 , DOI: 10.1002/srin.202000482
Anatoliy Zavdoveev 1 , Thierry Baudin 2 , Elena Pashinska 3 , Hyoung Seop Kim 4 , Francoi Brisset 2 , Mark Heaton 5 , Valeriy Poznyakov 1 , Massimo Rogante 6 , Viktor Tkachenko 3 , Ilya Klochkov 1 , Mykola Skoryk 7
Affiliation  

A successful attempt to incorporate the advantages of severe plastic deformation (SPD) methods in the continuous drawing process for low‐carbon steel is demonstrated. The structural features are considered on different scale levels, using a wide range of methods. While combining shear deformation, which parallels the basis of SPD with the conventional scheme, the cyclic process of grain refinement could be reached. As a result, the plasticity becomes enhanced. At the same time, an important characteristic such as residual stress also has a positive influence on manufacturability; particularly, the existence of the compression stress after shear deformation. The peculiarity of the structure affects the behavior of both mechanical and physical properties (like density, plasticity). The application of drawing with shear (DSh) technology as based on SPD principles, the mechanical softening effect is observed, as is the healing of microvoids. Such positive affection gives the opportunity to increase the effectiveness of drawing technology through controlling plasticity (ductility). In addition, it is considered exhaustion of the plasticity resource (EPR). It is shown that in the case of multipass deformation, there is a parabolic dependence of the EPR measurement, and minimum damage is achieved using a specific combination of partial reductions.

中文翻译:

低碳钢的连续严重塑性变形:物理力学性能和多尺度结构分析

证明了在低碳钢的连续拉伸过程中成功结合严重塑性变形(SPD)方法优点的成功尝试。使用多种方法,可以在不同的比例级别上考虑结构特征。在结合剪切变形(使SPD的基础与传统方案平行)的同时,可以达到晶粒细化的循环过程。结果,可塑性增强。同时,诸如残余应力之类的重要特征也对可制造性产生积极影响。特别是剪切变形后存在压缩应力。结构的特殊性会影响机械和物理特性(例如密度,可塑性)的行为。在基于SPD原理的剪切(DSh)拉伸技术的应用中,观察到机械软化效果以及微孔的愈合。这种积极的情感使人们有机会通过控制可塑性(延展性)来提高拉伸技术的有效性。此外,它被认为是可塑性资源(EPR)的耗尽。结果表明,在多道次变形的情况下,EPR测量值具有抛物线依赖性,并且使用部分减小的特定组合可以实现最小的损坏。它被认为是可塑性资源(EPR)的耗尽。结果表明,在多道次变形的情况下,EPR测量值具有抛物线依赖性,并且使用部分减小的特定组合可以实现最小的损坏。它被认为是可塑性资源(EPR)的耗尽。结果表明,在多道次变形的情况下,EPR测量值具有抛物线依赖性,并且使用部分减小的特定组合可以实现最小的损坏。
更新日期:2020-11-06
down
wechat
bug