当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High zT and Its Origin in Sb‐doped GeTe Single Crystals
Advanced Science ( IF 15.1 ) Pub Date : 2020-11-06 , DOI: 10.1002/advs.202002494
Ranganayakulu K. Vankayala, Tian‐Wey Lan, Prakash Parajuli, Fengjiao Liu, Rahul Rao, Shih Hsun Yu, Tsu‐Lien Hung, Chih‐Hao Lee, Shin‐ichiro Yano, Cheng‐Rong Hsing, Duc‐Long Nguyen, Cheng‐Lung Chen, Sriparna Bhattacharya, Kuei‐Hsien Chen, Min‐Nan Ou, Oliver Rancu, Apparao M. Rao, Yang‐Yuan Chen

A record high zT of 2.2 at 740 K is reported in Ge0.92Sb0.08Te single crystals, with an optimal hole carrier concentration ≈4 × 1020 cm−3 that simultaneously maximizes the power factor (PF) ≈56 µW cm−1 K−2 and minimizes the thermal conductivity ≈1.9 Wm−1 K−1. In addition to the presence of herringbone domains and stacking faults, the Ge0.92Sb0.08Te exhibits significant modification to phonon dispersion with an extra phonon excitation around ≈5–6 meV at Γ point of the Brillouin zone as confirmed through inelastic neutron scattering (INS) measurements. Density functional theory (DFT) confirmed this phonon excitation, and predicted another higher energy phonon excitation ≈12–13 meV at W point. These phonon excitations collectively increase the number of phonon decay channels leading to softening of phonon frequencies such that a three‐phonon process is dominant in Ge0.92Sb0.08Te, in contrast to a dominant four‐phonon process in pristine GeTe, highlighting the importance of phonon engineering approaches to improving thermoelectric (TE) performance.

中文翻译:

Sb 掺杂 GeTe 单晶的高 zT 及其起源

Ge 0.92 Sb 0.08 Te 单晶在 740 K 下的zT达到创纪录的 2.2,最佳空穴载流子浓度 ≈4 × 10 20 cm -3,同时最大化功率因数 ( PF ) ≈56 µW cm -1  K -2并最小化热导率 ≈1.9 Wm -1 K -1。除了存在人字形域和堆垛层错之外,Ge 0.92 Sb 0.08 Te 还表现出对声子色散的显着改变,在布里渊区的Γ点处具有约 5–6 meV 的额外声子激发,这一点通过非弹性中子散射 (INS) 得到了证实。 ) 测量。密度泛函理论(DFT)证实了这种声子激发,并预测在W点有另一个更高能量的声子激发 ≈12–13 meV。这些声子激发共同增加了声子衰变通道的数量,导致声子频率软化,使得三声子过程在 Ge 0.92 Sb 0.08 Te 中占主导地位,与原始 GeTe 中占主导地位的四声子过程形成鲜明对比,突出了提高热电 ( TE ) 性能的声子工程方法。
更新日期:2020-12-16
down
wechat
bug