当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimal Materials for Maximum Large-Area Near-Field Radiative Heat Transfer
ACS Photonics ( IF 7 ) Pub Date : 2020-11-05 , DOI: 10.1021/acsphotonics.0c01176
Lang Zhang 1 , Owen D. Miller 1
Affiliation  

We consider the space of all causal bulk materials, 2D materials, and metamaterials for maximum near-field radiative heat transfer (RHT) between planar structures. Causality constrains the bandwidth over which plasmonic response can occur, explaining two key traits in ideal materials: small background permittivities (minimal high-energy transitions in 2D materials) and Drude-like free-carrier response, which together optimally yield 10× enhancements beyond the theoretical state-of-the-art. We identify transparent conducting oxides, III-nitrides, and graphene as materials that should offer nearly ideal near-field RHT rates, if doped to exhibit plasmonic resonances at what we term “near-field Wien frequencies”. Deep-subwavelength patterning can provide marginal further gains at the expense of extremely small feature sizes. Optimal materials have moderate loss rates and plasmonic response at 19 μm for 300 K temperature, suggesting a new opportunity for plasmonics at mid- to far-infrared wavelengths, with low carrier concentrations and no requirement to minimize loss.

中文翻译:

最大面积大面积近场辐射热传递的最佳材料

我们考虑了所有因果散装材料,二维材料和超材料的空间,以实现平面结构之间的最大近场辐射热传递(RHT)。因果关系限制了等离激元响应可能发生的带宽,从而解释了理想材料中的两个关键特征:小的背景介电常数(二维材料中的最小高能跃迁)和类似Drude的自由载流子响应,它们共同优化地产生了10x以上的增强理论上最先进的。我们将透明导电氧化物,III族氮化物和石墨烯确定为应该提供近乎理想的近场RHT速率的材料,如果掺杂它们在我们称为“近场Wien频率”时表现出等离子体共振。深亚波长图案化可以以极小的特征尺寸为代价提供边际的进一步增益。
更新日期:2020-11-18
down
wechat
bug