当前位置: X-MOL 学术Appl. Math. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of heat source on combined convection flow inside wavy-walled cavity filled with nanofluids via heatline concept
Applied Mathematics and Computation ( IF 4 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.amc.2020.125754
Fatin M. Azizul , Ammar I. Alsabery , Ishak Hashim , Ali J. Chamkha

Abstract The appearance of a heat source at the bottom of a cavity against the cold part at the top wavy surface is examined in this work. The heat transportation, velocity of the fluid, and the temperature behaviour toward the mixed convection of nanofluids are obtained from the simulation of the Galerkin finite element technique and the Navier-Stokes equations. The other surfaces are considered adiabatic as well as both sides of the lid-driven cavity. It should be noted that the Grashof number, the volume fraction of alumina-nanoparticles, and the differentially-moving vertical walls are fixed at 10 5 , 0.02, the upward (right) and downward (left), respectively. To verify the computational code of derivation, the experimental and theoretical data from other researchers are compared. The results of the non-primitive variables, including the Richardson number, Reynolds number, number of undulations, dimensionless length, and the location of the heat source are compared. The numerical results indicate that larger values of the Richardson number and the Reynolds number enhance the rate of heat transfer. Not only two waves appear at the upper surface, but the heat source located at the centre with optimum height causes the entire cavity to have maximum heat transfer performance. The current problem is solved to benefit the installation of microelectronic cooling of a water-to-air heat exchanger or a pin-fin MHS heat transfer media.

中文翻译:

热源对通过热线概念填充纳米流体的波浪壁腔内组合对流的影响

摘要 本文研究了腔体底部的热源与顶部波状表面的冷部分相对的外观。从伽辽金有限元技术和纳维-斯托克斯方程的模拟中获得了热传输、流体速度和纳米流体混合对流的温度行为。其他表面以及盖子驱动腔的两侧都被认为是绝热的。应该注意的是,格拉肖夫数、氧化铝纳米颗粒的体积分数和差异移动的垂直壁分别固定在 10 5 、0.02、向上(右)和向下(左)。为了验证推导的计算代码,比较了其他研究人员的实验和理论数据。非原始变量的结果,包括理查森数、雷诺数、起伏数、无量纲长度、热源位置等进行比较。数值结果表明理查森数和雷诺数的较大值提高了传热速率。不仅上表面出现两波,而且位于中心且高度最佳的热源使整个腔体具有最大的传热性能。当前问题的解决有利于安装水-空气热交换器或针翅式 MHS 传热介质的微电子冷却。数值结果表明理查森数和雷诺数的较大值提高了传热速率。不仅上表面出现两波,而且位于中心且高度最佳的热源使整个腔体具有最大的传热性能。当前问题的解决有利于安装水-空气热交换器或针翅式 MHS 传热介质的微电子冷却。数值结果表明理查森数和雷诺数的较大值提高了传热速率。不仅上表面出现两波,而且位于中心且高度最佳的热源使整个腔体具有最大的传热性能。当前问题的解决有利于安装水-空气热交换器或针翅式 MHS 传热介质的微电子冷却。
更新日期:2021-03-01
down
wechat
bug