当前位置: X-MOL 学术Arch. Civ. Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Creep, shrinkage and permeation characteristics of geopolymer aggregate concrete: long-term performance
Archives of Civil and Mechanical Engineering ( IF 4.4 ) Pub Date : 2020-11-05 , DOI: 10.1007/s43452-020-00119-w
Charitha Seneviratne , Chamila Gunasekara , David W. Law , Sujeeva Setunge , Dilan Robert

The long-term impact on creep, drying shrinkage, and permeation characteristics of an innovative concrete produced with manufactured geopolymer coarse aggregate (GPA) has been investigated and compared with quarried Basalt aggregate concrete. Microstructure and pore-structure development up to 1 year were examined through scanning electron microscopy, nanoindentation, and X-ray computed tomography. Compressive strength and elastic modulus of GPA concrete varied from 34.6 to 50.8 and 18.5 to 20.5 GPa, respectively, between 28 and 365 days. The 1-year creep strain of GPA concrete was 747 microstrain while the calculated creep coefficient was 0.97, which is significantly lower than the creep coefficient predicted by AS 3600 and CEB-FIP models. Moreover, the 365-day drying shrinkage is 570 microstrain, which is also lower than the maximum permissible limit specified by AS3600. The GPA concrete displayed high water absorption, but lower air and water permeability compared to Basalt aggregate concrete. This is attributed to a porous surface layer with large number of capillaries increasing the water absorption of GPA concrete through capillary suction. The discontinuity in the pore network coupled with a condensed interfacial transition zone formed in GPA concrete could be the reason for lower permeability. Overall, the long-term performance of the GPA demonstrates a potential as a lightweight coarse aggregate for concrete, with the added advantage of reducing the environmental impact utilizing fly ash from coal-fired power generation.



中文翻译:

地质聚合物集料混凝土的蠕变,收缩和渗透特性:长期性能

研究了用人造地质聚合物粗骨料(GPA)生产的创新混凝土对蠕变,干燥收缩和渗透特性的长期影响,并将其与采石场玄武岩骨料混凝土进行了比较。通过扫描电子显微镜,纳米压痕和X射线计算机断层扫描检查了长达1年的微观结构和孔结构的发展。GPA混凝土的抗压强度和弹性模量在28天至365天之间分别为34.6至50.8 GPa和18.5至20.5 GPa。GPA混凝土的1年蠕变应变为747微应变,而计算得出的蠕变系数为0.97,大大低于AS 3600和CEB-FIP模型预测的蠕变系数。此外,365天的干燥收缩为570微应变,也低于AS3600指定的最大允许限制。与玄武岩骨料混凝土相比,GPA混凝土显示出高吸水率,但透气性和透水性较低。这归因于具有大量毛细管的多孔表面层,通过毛细吸力增加了GPA混凝土的吸水率。GPA混凝土中形成的孔网中的不连续性以及凝结的界面过渡区可能是渗透率较低的原因。总体而言,GPA的长期性能证明它是轻质粗骨料的潜力,并具有利用燃煤发电产生的粉煤灰减少环境影响的附加优势。但与玄武岩骨料混凝土相比,其空气和水的渗透性较低。这归因于具有大量毛细管的多孔表面层,通过毛细吸力增加了GPA混凝土的吸水率。GPA混凝土中形成的孔网中的不连续性以及凝结的界面过渡区可能是渗透率较低的原因。总体而言,GPA的长期性能证明它是轻质粗骨料的潜力,并具有利用燃煤发电产生的粉煤灰减少环境影响的附加优势。但与玄武岩骨料混凝土相比,其空气和水的渗透性较低。这归因于具有大量毛细管的多孔表面层,通过毛细吸力增加了GPA混凝土的吸水率。GPA混凝土中形成的孔网中的不连续性以及凝结的界面过渡区可能是渗透率较低的原因。总体而言,GPA的长期性能证明它是轻质粗骨料的潜力,并具有利用燃煤发电产生的粉煤灰减少环境影响的附加优势。GPA混凝土中形成的孔网中的不连续性以及凝结的界面过渡区可能是渗透率较低的原因。总体而言,GPA的长期性能证明它是轻质粗骨料的潜力,并具有利用燃煤发电产生的粉煤灰减少环境影响的附加优势。GPA混凝土中形成的孔网中的不连续性以及凝结的界面过渡区可能是渗透率较低的原因。总体而言,GPA的长期性能证明它是轻质粗骨料的潜力,并具有利用燃煤发电产生的粉煤灰减少环境影响的附加优势。

更新日期:2020-11-05
down
wechat
bug