当前位置: X-MOL 学术Ark. Mat. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the Hardy number of a domain in terms of harmonic measure and hyperbolic distance
Arkiv för Matematik ( IF 0.7 ) Pub Date : 2020-10-01 , DOI: 10.4310/arkiv.2020.v58.n2.a5
Christina Karafyllia 1
Affiliation  

Let ψ be a conformal map on $\mathbb{D}$ with $\psi \left(0\right)=0$ and let ${F_{\alpha }}=\left\{z\in \mathbb{D}:\left|\psi \left(z\right)\right|=\alpha \right\}$ for $\alpha > 0$. Denote by ${H^{p}}\left(\mathbb{D}\right)$ the classical Hardy space with exponent $p > 0$ and by $\mathtt{h}\left(\psi \right)$ the Hardy number of ψ. Consider the limits \[L:=\underset{\alpha \to +\infty }{\lim }\left(\log {\omega _{\mathbb{D}}}{\left(0,{F_{\alpha }}\right)^{-1}}\Big/ \log \alpha \right),\hspace{1em}\mu :=\underset{\alpha \to +\infty }{\lim }\left({d_{\mathbb{D}}}\left(0,{F_{\alpha }}\right)\big/ \log \alpha \right),\] where ${\omega _{\mathbb{D}}}\left(0,{F_{\alpha }}\right)$ denotes the harmonic measure at 0 of ${F_{\alpha }}$ and ${d_{\mathbb{D}}}\left(0,{F_{\alpha }}\right)$ denotes the hyperbolic distance between 0 and ${F_{\alpha }}$ in $\mathbb{D}$. We study a problem posed by P. Poggi-Corradini. What is the relation between L, μ and $\mathtt{h}\left(\psi \right)$? Motivated by the result of Kim and Sugawa that $\mathtt{h}\left(\psi \right)={\liminf _{\alpha \to +\infty }}(\log {\omega _{\mathbb{D}}}{\left(0,{F_{\alpha }}\right)^{-1}}{}\log \alpha )$, we show that $\mathtt{h}\left(\psi \right)={\liminf _{\alpha \to +\infty }}\left({d_{\mathbb{D}}}\left(0,{F_{\alpha }}\right)\big/\log \alpha \right)$. We also provide conditions for the existence of L and μ and for the equalities $L=\mu =\mathtt{h}\left(\psi \right)$. Poggi-Corradini proved that $\psi \notin {H^{\mu }}\left(\mathbb{D}\right)$ for a wide class of conformal maps ψ. We present an example of ψ such that $\psi \in {H^{\mu}}\left(\mathbb{D}\right)$.

中文翻译:

关于域的Hardy数,用调和测度和双曲距离表示

令ψ为$ \ psi \ left(0 \ right)= 0 $在$ \ mathbb {D} $上的保形图,并让$ {F _ {\ alpha}} = \ left \ {z \ in \ mathbb {D }:\ left | \ psi \ left(z \ right)\ right | = \ alpha \ right \} $表示$ \ alpha> 0 $。用$ {H ^ {p}} \ left(\ mathbb {D} \ right)$表示指数为$ p> 0 $的经典Hardy空间,用$ \ mathtt {h} \ left(\ psi \ right)$表示ψ的Hardy数。考虑极限\ [L:= \ underset {\ alpha \ to + \ infty} {\ lim} \ left(\ log {\ omega _ {\ mathbb {D}}} {\ left(0,{F _ {\ alpha}} \ right)^ {-1}} \ Big / \ log \ alpha \ right),\ hspace {1em} \ mu:= \ underset {\ alpha \ to + \ infty} {\ lim} \ left( {d _ {\ mathbb {D}}} \ left(0,{F _ {\ alpha}} \ right)\ big / \ log \ alpha \ right),\]其中$ {\ omega _ {\ mathbb {D} }} \ left(0,{F _ {\ alpha}} \ right)$表示$ {F _ {\ alpha}} $和$ {d _ {\ mathbb {D}}} \ left(0 ,{F _ {\ alpha}} \ right)$表示$ \ mathbb {D} $中0和$ {F _ {\ alpha}} $之间的双曲线距离。我们研究了P. Poggi-Corradini提出的问题。之间有什么关系L,μ和$ \ mathtt {h} \ left(\ psi \ right)$?根据Kim和Sugawa的结果,$ \ mathtt {h} \ left(\ psi \ right)= {\ liminf _ {\ alpha \ to + \ infty}}(\ log {\ omega _ {\ mathbb {D }}} {\ left(0,{F _ {\ alpha}} \ right)^ {-1}} {} \ log \ alpha)$,我们显示$ \ mathtt {h} \ left(\ psi \ right )= {\ liminf _ {\ alpha \ to + \ infty}} \ left({d _ {\ mathbb {D}}} \ left(0,{F _ {\ alpha}} \ right)\ big / \ log \ alpha \ right)$。我们还提供了存在L和μ以及等式$ L = \ mu = \ mathtt {h} \ left(\ psi \ right)$的条件。Poggi-Corradini证明了针对各种共形映射ψ的$ \ psi \ notin {H ^ {\ mu}} \ left(\ mathbb {D} \ right)$。我们给出一个ψ的例子,其中$ \ psi \ in {H ^ {\ mu}} \ left(\ mathbb {D} \ right)$。
更新日期:2020-11-04
down
wechat
bug