当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanical phenotyping of breast cell lines by in-flow deformation-dependent dynamics under tuneable compressive forces
Lab on a Chip ( IF 6.1 ) Pub Date : 2020-10-27 , DOI: 10.1039/d0lc00911c
David Dannhauser 1 , Maria Isabella Maremonti 1 , Valeria Panzetta 1 , Domenico Rossi 2 , Paolo Antonio Netti 3 , Filippo Causa 1
Affiliation  

Cell mechanical properties are powerful biomarkers for label-free phenotyping. To date, microfluidic approaches assay mechanical properties by measuring changes in cellular shape, applying extensional or shear flows or forcing cells to pass through constrictions. In general, such approaches use high-speed imaging or transit time measurements to evaluate cell deformation, while cell dynamics in-flow after stress imposition have not yet been considered. Here, we present a microfluidic approach to apply, over a wide range, tuneable compressive forces on suspended cells, which result in well distinct signatures of deformation-dependent dynamic motions. By properly conceiving microfluidic chip geometry and rheological fluid properties, we modulate applied single-cell forces, which result in different motion regimes (rolling, tumbling or tank-treating) depending on the investigated cell line. We decided to prove our approach by testing breast cell lines, with well-known mechanical properties. We measured a set of in-flow parameters (orientation angle, aspect ratio, cell deformation and cell diameter) as a backward analysis of cell mechanical response. By such an approach, we report that the highly invasive tumour cells (MDA-MB-231) are much more deformable (6-times higher) than healthy (MCF-10A) and low invasive ones (MCF-7). Thus, we demonstrate that a microfluidic design with tuneable rheological fluid properties and direct analysis of bright-field images can be suitable for the label-free mechanical phenotyping of various cell lines.

中文翻译:

在可调节的压缩力作用下,通过依赖于流入变形的动力学对乳腺细胞系进行机械表型分析

细胞机械性能是无标记表型的强大生物标记。迄今为止,微流体方法通过测量细胞形状的变化,施加伸展或剪切流或迫使细胞通过收缩来测定机械性能。通常,此类方法使用高速成像或渡越时间测量来评估细胞变形,而尚未考虑施加应力后流入的细胞动力学。在这里,我们提出了一种微流体方法,可在宽范围内对悬浮细胞施加可调节的压缩力,从而产生与变形有关的动态运动的鲜明特征。通过适当考虑微流体芯片的几何形状和流变流体特性,我们可以调节施加的单细胞力,从而导致不同的运动状态(滚动,翻滚或储罐处理),具体取决于所研究的细胞系。我们决定通过测试具有众所周知的机械性能的乳腺癌细胞系来证明我们的方法。我们测量了一组流入参数(方向角,纵横比,单元变形和单元直径),作为对单元机械响应的后向分析。通过这种方法,我们报告说,高侵袭性肿瘤细胞(MDA-MB-231)比健康(MCF-10A)和低侵袭性肿瘤细胞(MCF-7)更易变形(高6倍)。因此,我们证明具有可调节流变流体特性和明场图像直接分析的微流控设计可以适用于各种细胞系的无标记机械表型。具有众所周知的机械性能。我们测量了一组流入参数(方向角,纵横比,单元变形和单元直径),作为对单元机械响应的后向分析。通过这种方法,我们报告说,高侵袭性肿瘤细胞(MDA-MB-231)比健康(MCF-10A)和低侵袭性肿瘤细胞(MCF-7)更易变形(高6倍)。因此,我们证明具有可调节流变流体特性和明场图像直接分析的微流控设计可以适用于各种细胞系的无标记机械表型。具有众所周知的机械性能。我们测量了一组流入参数(方向角,纵横比,单元变形和单元直径),作为对单元机械响应的后向分析。通过这种方法,我们报告说,高侵袭性肿瘤细胞(MDA-MB-231)比健康(MCF-10A)和低侵袭性肿瘤细胞(MCF-7)更易变形(高6倍)。因此,我们证明具有可调节流变流体特性和明场图像直接分析的微流控设计可以适用于各种细胞系的无标记机械表型。我们报告说,高侵袭性肿瘤细胞(MDA-MB-231)比健康(MCF-10A)和低侵袭性肿瘤细胞(MCF-7)更易变形(高6倍)。因此,我们证明具有可调节流变流体特性和明场图像直接分析的微流控设计可以适用于各种细胞系的无标记机械表型。我们报告说,高侵袭性肿瘤细胞(MDA-MB-231)比健康(MCF-10A)和低侵袭性肿瘤细胞(MCF-7)更易变形(高6倍)。因此,我们证明具有可调节流变流体特性和明场图像直接分析的微流控设计可以适用于各种细胞系的无标记机械表型。
更新日期:2020-11-04
down
wechat
bug