当前位置: X-MOL 学术J. Group Theory › 论文详情
Groups that have a partition by commuting subsets
Journal of Group Theory ( IF 0.466 ) Pub Date : 2020-11-04 , DOI: 10.1515/jgth-2020-0065
Tuval Foguel; Josh Hiller; Mark L. Lewis; Alireza Moghaddamfar

Let 𝐺 be a nonabelian group. We say that 𝐺 has an abelian partition if there exists a partition of 𝐺 into commuting subsets A1,A2,,An of 𝐺 such that |Ai|2 for each i=1,2,,n. This paper investigates problems relating to groups with abelian partitions. Among other results, we show that every finite group is isomorphic to a subgroup of a group with an abelian partition and also isomorphic to a subgroup of a group with no abelian partition. We also find bounds for the minimum number of partitions for several families of groups which admit abelian partitions – with exact calculations in some cases. Finally, we examine how the size of a partition with the minimum number of parts behaves with respect to the direct product.
更新日期:2020-12-01
全部期刊列表>>
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
苏州大学
林亮
南方科技大学
朱守非
内蒙古大学
杨小会
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
上海纽约大学
浙江大学
廖矿标
天合科研
x-mol收录
试剂库存
down
wechat
bug