当前位置: X-MOL 学术Renew. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Water splitting with screw pitched cylindrical electrode and Fe(OH)2 catalyst under 1.4 Volt
Renewable Energy ( IF 8.7 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.renene.2020.10.130
Jagat Das , Partha Pratim Sahu

Abstract Electrochemical water splitting has brought clean route of green energy generation through its hydrogen evolution capability having no environment impact in the form of global warming. The related technology experiences challenges associated with cost, durability and mass production of hydrogen separated from water. Proper morphological design of highly active and low cost materials for both electrodes and electro-catalyst has become essential to deal with these issues. Here iron alloy cylindrical electrodes with screw pitched morphology and low cost ferrous hydroxide nano-particles have been introduced as an electrode and electro-catalyst respectively in compact integrated water electrolysis cell to catalyze both reactions in same electrolyte. Theoretical model of screw pitched electrode has been made to enhance sharp surface area for efficient Hydrogen and Oxygen evolution. It demonstrates water electrolysis using low cell voltage of 1.68 V at current density of 500 mA/cm2 with long term durability over 80 hours for commercial use. The experiments including high speed synthesis of nano-catalysts performed at room temperature provide guarantee of saving energy. This works promises a significant move towards mass production of hydrogen fuel through inexpensive method of water splitting.

中文翻译:

在 1.4 伏电压下使用螺旋斜圆柱电极和 Fe(OH)2 催化剂分解水

摘要 电化学水分解通过其析氢能力,不以全球变暖的形式对环境产生影响,为绿色能源的产生带来了清洁途径。相关技术面临与从水中分离的氢气的成本、耐用性和大规模生产相关的挑战。用于电极和电催化剂的高活性和低成本材料的适当形态设计已成为解决这些问题的必要条件。在这里,具有螺距形貌的铁合金圆柱电极和低成本的氢氧化亚铁纳米颗粒分别作为电极和电催化剂被引入紧凑的集成水电解池中,以在相同的电解液中催化这两种反应。已建立螺距电极的理论模型,以增强尖锐的表面积,以实现有效的氢气和氧气析出。它演示了使用 1.68 V 的低电池电压和 500 mA/cm2 的电流密度进行水电解,并具有超过 80 小时的商业用途的长期耐久性。包括在室温下进行的纳米催化剂的高速合成的实验为节能提供了保证。这项工作有望通过廉价的水分解方法大规模生产氢燃料。包括在室温下进行的纳米催化剂的高速合成的实验为节能提供了保证。这项工作有望通过廉价的水分解方法大规模生产氢燃料。包括在室温下进行的纳米催化剂的高速合成的实验为节能提供了保证。这项工作有望通过廉价的水分解方法大规模生产氢燃料。
更新日期:2021-03-01
down
wechat
bug