当前位置: X-MOL 学术IEEE Trans. Transp. Electrif. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design and Analysis of an Integrated Modular Motor Drive for More Electric Aircraft
IEEE Transactions on Transportation Electrification ( IF 7 ) Pub Date : 2020-12-01 , DOI: 10.1109/tte.2020.2992901
Shaopeng Wu , Chenchen Tian , Weiduo Zhao , Jinyang Zhou , Xinghong Zhang

Although many permanent magnet synchronous motors (PMSMs) are used as the driving source for aerospace applications, the motor and converter are not integrated. This leads to large volume and low power density of the system. This article proposes an SiC-based integrated modular motor drive (IMMD) as a potential solution, in which the SiC converter is placed at the end of the stator core of the motor. The converter is directly connected to the end-turn windings of the motor so as to reduce the wiring cable losses, with the motor and converter being cooled by an integrated water-cooled housing, significantly reducing the weight of the system and improving the power density. First, the topology of a five-phase IMMD is briefly introduced. Then, the influence of the number of slots on the output performance of the motor is analyzed with the aim of improving the power density of the system. Because the system integration will cause the loss density of the motor to sharply increase, this will thereby cause the local temperature of the IMMD to be higher. A detailed analysis and calculation of the thermal design will be required to improve the reliability of the system in high-temperature environments. The skewed rotor method is adopted so that the torque ripple of the fractional-slot motor is suppressed in the high-speed region. The results show that these methods can increase the power density of the IMMD and expand the speed range of the motor so as to meet the needs of different stages during the whole flight of more electric aircraft.

中文翻译:

多电动飞机集成模块化电机驱动的设计与分析

尽管许多永磁同步电机 (PMSM) 被用作航空航天应用的驱动源,但电机和转换器并未集成在一起。这导致系统的大体积和低功率密度。本文提出了一种基于 SiC 的集成模块化电机驱动器 (IMMD) 作为潜在解决方案,其中 SiC 转换器放置在电机定子铁芯的末端。变流器直接与电机端匝绕组相连,减少接线损耗,电机和变流器采用一体式水冷外壳冷却,显着减轻系统重量,提高功率密度. 首先,简要介绍了五相 IMMD 的拓扑结构。然后,分析槽数对电机输出性能的影响,以提高系统的功率密度。因为系统集成会导致电机的损耗密度急剧增加,从而导致IMMD局部温度升高。需要对热设计进行详细的分析和计算,以提高系统在高温环境下的可靠性。采用斜转子方式,抑制了分槽电机在高速区域的转矩脉动。结果表明,这些方法可以提高IMMD的功率密度,扩大电机的速度范围,以满足更多电动飞机整个飞行过程中不同阶段的需求。因为系统集成会导致电机的损耗密度急剧增加,从而导致IMMD局部温度升高。需要对热设计进行详细的分析和计算,以提高系统在高温环境下的可靠性。采用斜转子方式,抑制了分槽电机在高速区域的转矩脉动。结果表明,这些方法可以提高IMMD的功率密度,扩大电机的速度范围,以满足更多电动飞机整个飞行过程中不同阶段的需求。因为系统集成会导致电机的损耗密度急剧增加,从而导致IMMD局部温度升高。需要对热设计进行详细的分析和计算,以提高系统在高温环境下的可靠性。采用斜转子方式,抑制了分槽电机在高速区域的转矩脉动。结果表明,这些方法可以提高IMMD的功率密度,扩大电机的速度范围,以满足更多电动飞机整个飞行过程中不同阶段的需求。需要对热设计进行详细的分析和计算,以提高系统在高温环境下的可靠性。采用斜转子方式,抑制了分槽电机在高速区域的转矩脉动。结果表明,这些方法可以提高IMMD的功率密度,扩大电机的速度范围,以满足更多电动飞机整个飞行过程中不同阶段的需求。需要对热设计进行详细的分析和计算,以提高系统在高温环境下的可靠性。采用斜转子方式,抑制了分槽电机在高速区域的转矩脉动。结果表明,这些方法可以提高IMMD的功率密度,扩大电机的速度范围,以满足更多电动飞机整个飞行过程中不同阶段的需求。
更新日期:2020-12-01
down
wechat
bug