当前位置: X-MOL 学术Vadose Zone J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling near‐surface water redistribution in a desert soil
Vadose Zone Journal ( IF 2.8 ) Pub Date : 2020-11-03 , DOI: 10.1002/vzj2.20081
Yuan Luo 1 , Teamrat A. Ghezzehei 2 , Zhongbo Yu 3 , Markus Berli 1
Affiliation  

Despite the vast extent of desert soils on the earth's surface, our understanding of the moisture dynamics of near‐surface desert soils (i.e., the top centimeters to few meters of the soil profile) remain limited. The goal of this study was to explore the use of the Peters–Durner–Iden (or PDI) instead of bimodal van Genuchten (or BVG) hydraulic functions to improve water redistribution simulations using HYDRUS‐1D for drier soils in desert environments. The PDI hydraulic functions take capillary and film flow into account, whereas BVG hydraulic functions are limited to capillary flow. By comparing measured with simulated water content data, we found that moisture redistribution simulations were improved by using PDI instead of BVG soil water retention and hydraulic conductivity functions. Compared with the BVG simulations, the PDI simulations particularly improved for drier soil conditions (i.e., volumetric water contents ranging from 6 to 10%; suction heads between pF 2 and pF 3.8, and saturation degrees between 19 and 32%, respectively) for the studied sandy soil of Scaling Environmental Processes in Heterogeneous Arid Soils (SEPHAS) Lysimeter 1. For pF >3, the PDI functions predicted higher hydraulic conductivity than the BVG functions, which confirmed the hypothesis that a hydraulic conductivity function, which can capture film flow, may improve moisture distribution simulations for dry soils. For pF between 2 and 3, however, simulation results improved due to the difference in the water retention rather than the hydraulic conductivity function.

中文翻译:

模拟沙漠土壤中的近地表水重新分配

尽管地球表面上存在大量的沙漠土壤,但我们对近地表沙漠土壤(即,土壤剖面的顶部厘米至几米)的水分动力学的理解仍然有限。这项研究的目的是探索使用Peters–Durner–Iden(或PDI)代替双峰范Genuchten(或BVG)液压功能,以改善使用HYDRUS-1D处理沙漠环境中较干燥土壤的水再分配模拟。PDI液压功能考虑了毛细管和薄膜的流动,而BVG液压功能仅限于毛细管的流动。通过将测量值与模拟的含水量数据进行比较,我们发现使用PDI代替BVG的土壤保水率和水力传导率函数可以改善水分再分配模拟。与BVG模拟相比,对于比例缩放环境下的沙质土壤,较干燥的土壤条件(即,体积水含量为6%至10%;吸头分别在pF 2和pF 3.8之间,饱和度分别在19%和32%之间)的PDI模拟得到了特别改进。非均质干旱土壤(SEPHAS)测渗仪的过程1.对于pF> 3,PDI函数预测的水力传导率高于BVG函数,这证实了以下假设:可以捕获膜流的水力传导率函数可以改善水汽分布模拟。干燥的土壤。然而,对于介于2和3之间的pF,由于保水性而不是水力传导率函数的差异,因此模拟结果得到了改善。在非均质干旱土壤(SEPHAS)溶渗仪1中按比例缩放环境过程研究的沙质土壤,吸力头在pF 2和pF 3.8之间,饱和度分别在19和32%之间。对于pF> 3,PDI函数预测较高的水力BVG函数比BVG函数具有更高的电导率,这证实了以下假设:可以捕获膜流的水力导流函数可以改善干燥土壤的水分分布模拟。然而,对于介于2和3之间的pF,由于保水性而不是水力传导率函数的差异,因此模拟结果得到了改善。在非均质干旱土壤(SEPHAS)溶渗仪1中按比例缩放环境过程研究的沙质土壤,吸力头在pF 2和pF 3.8之间,饱和度分别在19和32%之间。对于pF> 3,PDI函数预测较高的水力BVG函数比BVG函数具有更高的电导率,这证实了以下假设:可以捕获膜流的水力导流函数可以改善干燥土壤的水分分布模拟。然而,对于介于2和3之间的pF,由于保水性而不是水力传导率函数的差异,因此模拟结果得到了改善。PDI函数预测的水力传导率高于BVG函数,这证实了以下假设:可以捕获膜流的水力传导率功能可以改善干燥土壤的水分分布模拟。然而,对于介于2和3之间的pF,由于保水性而不是水力传导率函数的差异,因此模拟结果得到了改善。PDI函数预测的水力传导率高于BVG函数,这证实了以下假设:可以捕获膜流的水力传导率功能可以改善干燥土壤的水分分布模拟。然而,对于介于2和3之间的pF,由于保水性而不是水力传导率函数的差异,因此模拟结果得到了改善。
更新日期:2020-11-03
down
wechat
bug