当前位置: X-MOL 学术Chem. Data Collect. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Physicochemical characterization data of pine-derived biochar and natural zeolite as precursors to catalysts
Chemical Data Collections Pub Date : 2020-12-01 , DOI: 10.1016/j.cdc.2020.100573
Diplina Paul , Nitesh Kasera , Praveen Kolar , Steven G. Hall

Abstract There is a significant interest in the use of biochar and zeolite-based adsorbents and catalysts for the removal of contaminants from water, air, and soil. Understanding the properties of these materials can dramatically improve engineering design and commercial use of these materials, leading to improved sustainability, cost reductions and effective use of materials. In this article, pine-derived biochar and commercially available natural zeolite have been systematically studied. The physical and chemical properties of biochar and zeolite have been investigated using different characterization methods such as acid value, point of zero charge (PZC), Scanning Electron Microscopy, Surface Profilometry, Fourier Transform Infrared Spectrometry, X-ray Photoelectron Spectroscopy, Time of Flight-Secondary Ion Mass Spectrometry, surface charge, and cation exchange capacity (CEC). The acid values of biochar and zeolite were determined to be 6.10 and 6.73, respectively while their PZC were 5.82 and 6.74, respectively. Surface profilometry test indicated that zeolite was about 1.6 times rougher than biochar. Additionally, the surface charge of biochar and zeolite were determined to be 214.28 and 1060 µeq of PDADMAC/gm, respectively while their cation exchange capacities were 17.5 and 32.5 cmol/kg, respectively. It is anticipated that researchers will find the characterization data presented in this article useful for further study and modification of these materials to be used as precursors for the synthesis of catalysts and other value-added products.

中文翻译:

松源生物炭和天然沸石作为催化剂前体的物理化学表征数据

摘要 使用生物炭和沸石基吸附剂和催化剂去除水、空气和土壤中的污染物引起了人们极大的兴趣。了解这些材料的特性可以显着改善这些材料的工程设计和商业用途,从而提高可持续性、降低成本和有效利用材料。本文系统地研究了松木衍生的生物炭和市售的天然沸石。使用不同的表征方法研究了生物炭和沸石的物理和化学性质,例如酸值、零电荷点 (PZC)、扫描电子显微镜、表面轮廓法、傅里叶变换红外光谱、X 射线光电子能谱、飞行时间-二次离子质谱,表面电荷,和阳离子交换容量 (CEC)。生物炭和沸石的酸值分别测定为 6.10 和 6.73,而它们的 PZC 分别为 5.82 和 6.74。表面轮廓测试表明沸石比生物炭粗糙约 1.6 倍。此外,生物炭和沸石的表面电荷分别为 214.28 和 1060 µeq PDMAC/gm,而它们的阳离子交换容量分别为 17.5 和 32.5 cmol/kg。预计研究人员将发现本文中提供的表征数据有助于进一步研究和修改这些材料,以用作合成催化剂和其他增值产品的前体。而他们的 PZC 分别为 5.82 和 6.74。表面轮廓测试表明沸石比生物炭粗糙约 1.6 倍。此外,生物炭和沸石的表面电荷分别为 214.28 和 1060 µeq PDMAC/gm,而它们的阳离子交换容量分别为 17.5 和 32.5 cmol/kg。预计研究人员将发现本文中提供的表征数据有助于进一步研究和修改这些材料,以用作合成催化剂和其他增值产品的前体。而他们的 PZC 分别为 5.82 和 6.74。表面轮廓测试表明沸石比生物炭粗糙约 1.6 倍。此外,生物炭和沸石的表面电荷分别为 214.28 和 1060 µeq PDMAC/gm,而它们的阳离子交换容量分别为 17.5 和 32.5 cmol/kg。预计研究人员将发现本文中提供的表征数据有助于进一步研究和修改这些材料,以用作合成催化剂和其他增值产品的前体。而它们的阳离子交换容量分别为 17.5 和 32.5 cmol/kg。预计研究人员将发现本文中提供的表征数据有助于进一步研究和修改这些材料,以用作合成催化剂和其他增值产品的前体。而它们的阳离子交换容量分别为 17.5 和 32.5 cmol/kg。预计研究人员将发现本文中提供的表征数据有助于进一步研究和修改这些材料,以用作合成催化剂和其他增值产品的前体。
更新日期:2020-12-01
down
wechat
bug