当前位置: X-MOL 学术FlatChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermomechanical Insight into the Stability of Nanoporous Graphene Membranes
FlatChem ( IF 6.2 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.flatc.2020.100196
Marcelo Lopes Pereira , Luiz Antônio Ribeiro

Porous graphene (PG) is a graphene derivative endowed of nanoporous architectures. This material possesses a particular structure with interconnected networks of high pore volume, producing membranes with a large surface area. Experiments revealed that PG combines remarkable properties such as high mechanical strength and good thermal stability. In this work, we have carried out fully-atomistic reactive (ReaxFF) molecular dynamics simulations to perform a comprehensive study on the elastic properties, fracture mechanism, and thermal stability of 2D porous n-Benzo-CMPs (CMP and n refer, respectively, to pi-conjugated microporous polymers and the pore diameter) membranes with distinct nanoporous architectures. For comparison purposes, the results were also contrasted with the ones for graphene sheets of similar dimensions. We adopted three different nanoporous diameters: small (3.45 A), medium (8.07 A), and large (11.93 A). Results showed that PG is thermally stable up to 4660K, about 1000K smaller than the graphene melting point (5643K). During the PG heating, linear atomic chains are formed combining carbon and hydrogen atoms. The fracture strains range between 15%-34% by applying a uniaxial loading in both plane directions for temperatures up to 1200K. The fracture strain increases proportionally with the nanoporous size. Remarkably, the critical tensile strength for the PG complete fracture is temperature independent. Instead, it depends only on the nanoporous diameter. All the PG membranes go abruptly from elastic to completely fractured regimes after a critical strain threshold.

中文翻译:

纳米多孔石墨烯膜稳定性的热机械洞察

多孔石墨烯 (PG) 是一种具有纳米多孔结构的石墨烯衍生物。这种材料具有特殊的结构,具有高孔体积的互连网络,可产生具有大表面积的膜。实验表明,PG结合了卓越的性能,如高机械强度和良好的热稳定性。在这项工作中,我们进行了全原子反应 (ReaxFF) 分子动力学模拟,对二维多孔 n-苯并-CMPs(CMP 和 n 分别是指, π共轭微孔聚合物和孔径)具有不同纳米多孔结构的膜。出于比较的目的,结果也与类似尺寸的石墨烯片的结果进行了对比。我们采用了三种不同的纳米孔直径:小 (3.45 A)、中 (8.07 A) 和大 (11.93 A)。结果表明,PG 的热稳定性高达 4660K,比石墨烯的熔点(5643K)小约 1000K。在PG加热过程中,由碳原子和氢原子结合形成线性原子链。通过在两个平面方向上施加单轴载荷,温度高达 1200K,断裂应变范围在 15%-34% 之间。断裂应变与纳米孔尺寸成比例地增加。值得注意的是,PG 完全断裂的临界拉伸强度与温度无关。相反,它仅取决于纳米孔直径。在临界应变阈值之后,所有 PG 膜突然从弹性状态转变为完全断裂状态。结果表明,PG 的热稳定性高达 4660K,比石墨烯的熔点(5643K)小约 1000K。在PG加热过程中,由碳原子和氢原子结合形成线性原子链。通过在两个平面方向上施加单轴载荷,温度高达 1200K,断裂应变范围在 15%-34% 之间。断裂应变与纳米孔尺寸成比例地增加。值得注意的是,PG 完全断裂的临界拉伸强度与温度无关。相反,它仅取决于纳米孔直径。在临界应变阈值之后,所有 PG 膜突然从弹性状态转变为完全断裂状态。结果表明,PG 的热稳定性高达 4660K,比石墨烯的熔点(5643K)小约 1000K。在PG加热过程中,由碳原子和氢原子结合形成线性原子链。通过在两个平面方向上施加单轴载荷,温度高达 1200K,断裂应变范围在 15%-34% 之间。断裂应变与纳米孔尺寸成比例地增加。值得注意的是,PG 完全断裂的临界拉伸强度与温度无关。相反,它仅取决于纳米孔直径。在临界应变阈值之后,所有 PG 膜突然从弹性状态转变为完全断裂状态。由碳原子和氢原子结合形成线性原子链。通过在两个平面方向上施加单轴载荷,温度高达 1200K,断裂应变范围在 15%-34% 之间。断裂应变与纳米孔尺寸成比例地增加。值得注意的是,PG 完全断裂的临界拉伸强度与温度无关。相反,它仅取决于纳米孔直径。在临界应变阈值之后,所有 PG 膜突然从弹性状态转变为完全断裂状态。由碳原子和氢原子结合形成线性原子链。通过在两个平面方向上施加单轴载荷,温度高达 1200K,断裂应变范围在 15%-34% 之间。断裂应变与纳米孔尺寸成比例地增加。值得注意的是,PG 完全断裂的临界拉伸强度与温度无关。相反,它仅取决于纳米孔直径。在临界应变阈值之后,所有 PG 膜突然从弹性状态转变为完全断裂状态。它仅取决于纳米孔直径。在临界应变阈值之后,所有 PG 膜突然从弹性状态转变为完全断裂状态。它仅取决于纳米孔直径。在临界应变阈值之后,所有 PG 膜突然从弹性状态转变为完全断裂状态。
更新日期:2020-11-01
down
wechat
bug