当前位置: X-MOL 学术Sens. Bio-Sens. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Alcohol sensing and classification using PCF-based sensor
Sensing and Bio-Sensing Research Pub Date : 2020-10-24 , DOI: 10.1016/j.sbsr.2020.100384
Faysal Iqbal , Sandipa Biswas , Abdullah Al-Mamun Bulbul , Hasibur Rahaman , Md. Bellal Hossain , Md. Ekhlasur Rahaman , Md. Abdul Awal

This paper focuses on designing a Photonic Crystal Fiber (PCF) based sensor model. The anticipated sensor is modelled and simulated using COMSOL Multiphysics to carry-out experiments on multiple optical parameters that evaluate the efficiency of this model. This model aims to detect alcohol and classify it. Three variants of alcohol, namely methanol, ethanol, and propanol, have been considered in this study. These analytes are then injected into the core-region separately. The model is then simulated between 1.0 THz and 2.5 THz frequency band to evaluate the optical properties. Simulation results demonstrate higher relative sensitivity of approximately 88%, 91%, and 92% at 2.0 THz for methanol, ethanol, and propanol, respectively. Besides, the confinement loss for this model approaches nearly zero immediately after 1.2 THz. Furthermore, a shallow effective material loss (EML) is found for this sensor model to sense these three types of alcohol. For instance, the EML value is only 0.0056 cm−1 in the case of methanol sensing. Finally, different optical parameters presented in this study demonstrate the effectiveness of the proposed model in sensing various alcohols.



中文翻译:

使用基于PCF的传感器进行酒精感测和分类

本文着重设计基于光子晶体光纤(PCF)的传感器模型。使用COMSOL Multiphysics对预期的传感器进行建模和仿真,以执行评估该模型效率的多个光学参数。该模型旨在检测酒精并对其进行分类。这项研究考虑了醇的三种变体,即甲醇,乙醇和丙醇。然后将这些分析物分别注入核心区域。然后在1.0 THz和2.5 THz频带之间对模型进行仿真,以评估光学性能。仿真结果表明,在2.0 THz时,甲醇,乙醇和丙醇的相对灵敏度较高,分别约为88%,91%和92%。此外,此模型的限制损耗在1.2 THz之后立即接近零。此外,对于该传感器模型,发现了一种有效的浅层材料损失(EML),以感应这三种类型的酒精。例如,EML值仅为0.0056厘米在甲醇检测下为-1。最后,本研究中提出的不同光学参数证明了该模型在感测各种酒精中的有效性。

更新日期:2020-12-04
down
wechat
bug