当前位置: X-MOL 学术Commun. Contemp. Math. › 论文详情
Bratteli diagrams via the De Concini–Procesi theorem
Communications in Contemporary Mathematics ( IF 1.278 ) Pub Date : 2020-10-29 , DOI: 10.1142/s021919972050073x
Daniele Mundici

An AF algebra 𝔄 is said to be an AF algebra if the Murray–von Neumann order of its projections is a lattice. Many, if not most, of the interesting classes of AF algebras existing in the literature are AF algebras. We construct an algorithm which, on input a finite presentation (by generators and relations) of the Elliott semigroup of an AF algebra 𝔄, generates a Bratteli diagram of 𝔄. We generalize this result to the case when 𝔄 has an infinite presentation with a decidable word problem, in the sense of the classical theory of recursive group presentations. Applications are given to a large class of AF algebras, including almost all AF algebras whose Bratteli diagram is explicitly described in the literature. The core of our main algorithms is a combinatorial-polyhedral version of the De Concini–Procesi theorem on the elimination of points of indeterminacy in toric varieties.

更新日期:2020-12-04
全部期刊列表>>
美国矿物金属材料学期刊
地学环境科学SCI期刊
自然科研论文编辑
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
苏州大学
朱守非
南方科技大学
杨财广
内蒙古大学
杨小会
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
上海纽约大学
浙江大学
廖矿标
天合科研
x-mol收录
试剂库存
down
wechat
bug