当前位置: X-MOL 学术Biotechnol. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering Tobacco Mosaic Virus and Its Virus‐Like‐Particles for Synthesis of Biotemplated Nanomaterials
Biotechnology Journal ( IF 4.7 ) Pub Date : 2020-11-01 , DOI: 10.1002/biot.202000311
Kok Zhi Lee 1 , Vindula Basnayake Pussepitiyalage 2 , Yu‐Hsuan Lee 3 , L. Sue Loesch‐Fries 4 , Michael T. Harris 3 , Shohreh Hemmati 2 , Kevin V. Solomon 1, 5
Affiliation  

Biomolecules are increasingly attractive templates for the synthesis of functional nanomaterials. Chief among them is the plant tobacco mosaic virus (TMV) due to its high aspect ratio, narrow size distribution, diverse biochemical functionalities presented on the surface, and compatibility with a number of chemical conjugations. These properties are also easily manipulated by genetic modification to enable the synthesis of a range of metallic and non‐metallic nanomaterials for diverse applications. This article reviews the characteristics of TMV and related viruses, and their virus‐like particle (VLP) derivatives, and how these may be manipulated to extend their use and function. A focus of recent efforts has been on greater understanding and control of the self‐assembly processes that drive biotemplate formation. How these features have been exploited in engineering applications such as, sensing, catalysis, and energy storage are briefly outlined. While control of VLP surface features is well‐established, fewer tools exist to control VLP self‐assembly, which limits efforts to control template uniformity and synthesis of certain templated nanomaterials. However, emerging advances in synthetic biology, machine learning, and other fields promise to accelerate efforts to control template uniformity and nanomaterial synthesis enabling more widescale industrial use of VLP‐based biotemplates.

中文翻译:

工程烟草花叶病毒及其类似病毒的颗粒,用于合成生物模板纳米材料

生物分子是用于合成功能纳米材料的越来越有吸引力的模板。其中最主要的是植物烟草花叶病毒(TMV),因为它的长宽比高,尺寸分布窄,表面呈现出多种生化功能,并且与许多化学结合物兼容。这些特性也很容易通过基因修饰来操纵,从而能够合成用于各种应用的一系列金属和非金属纳米材料。本文回顾了TMV和相关病毒的特征,以及它们的病毒样颗粒(VLP)衍生物,以及如何对其进行操作以扩展其用途和功能。最近的工作重点是更好地理解和控制驱动生物模板形成的自组装过程。简要概述了如何在工程应用中利用这些功能,例如传感,催化和能量存储。尽管已经很好地控制了VLP表面特征,但是控制VLP自组装的工具却很少,这限制了控制模板均匀性和某些模板化纳米材料合成的工作。但是,合成生物学,机器学习和其他领域的新兴进展有望加快控制模板均匀性和纳米材料合成的工作,从而实现基于VLP的生物模板的更广泛的工业应用。这限制了控制模板均匀性和某些模板化纳米材料合成的努力。但是,合成生物学,机器学习和其他领域的新兴进展有望加快控制模板均匀性和纳米材料合成的工作,从而实现基于VLP的生物模板的更广泛的工业应用。这限制了控制模板均匀性和某些模板化纳米材料合成的努力。但是,合成生物学,机器学习和其他领域的新兴进展有望加快控制模板均匀性和纳米材料合成的工作,从而实现基于VLP的生物模板的更广泛的工业应用。
更新日期:2020-11-01
down
wechat
bug