当前位置: X-MOL 学术Int. J. Numer. Meth. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A decoupling scheme for two‐scale finite thermoviscoelasticity with thermal and cure‐induced deformations
International Journal for Numerical Methods in Engineering ( IF 2.9 ) Pub Date : 2020-10-31 , DOI: 10.1002/nme.6575
Risa Saito 1 , Yosuke Yamanaka 1 , Seishiro Matsubara 2 , Tomonaga Okabe 3, 4 , Shuji Moriguchi 5 , Kenjiro Terada 5
Affiliation  

This article proposes a decoupling scheme for two‐scale analysis of fiber‐reinforced plastics (FRP) exhibiting finite thermoviscoelasticity in consideration of the dependences of resin's mechanical and nonmechanical deformation characteristics on the degree of cure (DOC) and ambient temperature. To characterize the macroscopic material behavior, numerical material tests are carried out on a unit cell composed of a polymer resin matrix and carbon fibers. The generalized Maxwell model (GMM) is employed for resin' material behavior, while its orthotropic version is assumed for FRP. The evolution of DOC is reflected in the evaluation of the nonmechanical deformation by cure shrinkage in addition to thermal expansion/contraction. The key ingredient of this study is the novel strategy for identifying the macroscopic coefficients of these nonmechanical deformations, both of which must be separately defined in the equilibrium and nonequilibrium elements of the orthotropic GMM. In addition, a modification is originally made on the evolution equations of the nonequilibrium stresses in the GMM. The verification analyses are carried out to confirm the adequateness of the proposed identification methods and followed by numerical examples of two‐scale analysis to demonstrate the capability of simulating the macro‐ and microscopic thermomechanical responses of FRP subjected to curing.

中文翻译:

具有热变形和固化变形的两阶有限热粘弹性解耦方案

考虑到树脂的机械和非机械变形特性对固化度(DOC)和环境温度的依赖关系,本文提出了一种对热膨胀系数有限的纤维增强塑料(FRP)进行两尺度分析的解耦方案。为了表征宏观材料行为,对由聚合物树脂基体和碳纤维组成的晶胞进行了数值材料测试。树脂的材料性能采用广义麦克斯韦模型(GMM),而FRP则采用其正交异性模型。DOC的演变反映在除热膨胀/收缩之外,还通过固化收缩对非机械变形的评估中。这项研究的关键内容是用于识别这些非机械变形的宏观系数的新颖策略,这两个特性必须在正交各向异性GMM的平衡和非平衡元素中分别定义。此外,最初对GMM中非平衡应力的演化方程进行了修改。进行验证分析以确认所提出的识别方法的正确性,然后通过两级分析的数值示例来证明模拟固化后FRP宏观和微观热机械响应的能力。对GMM中非平衡应力的演化方程进行了最初的修改。进行验证分析以确认所提出的识别方法的正确性,然后通过两级分析的数值示例来证明模拟固化后FRP宏观和微观热机械响应的能力。对GMM中非平衡应力的演化方程进行了最初的修改。进行验证分析以确认所提出的识别方法的正确性,然后通过两级分析的数值示例来证明模拟固化后FRP宏观和微观热机械响应的能力。
更新日期:2020-10-31
down
wechat
bug